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Machine Learning

Machine Learning (ML) is the practice of estimating models that make predictions
on ‘new’ data using available data.

Helpful when the actual model is very complex and no known algorithms can discover
such model or they take large amount of time or other resources.
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Machine Learning Paradigms

Supervised ML
▶ Classification

⋆ Categorical (qualitative)
⋆ Numerical (quantitative)

▶ Regression

Unsupervised ML
▶ Clustering
▶ Association

Semi-Supervised ML

Reinforcement Learning
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Issues with ML

Lack of good quality data sets.

Possibilty of errors e.g., underfitting or overfitting possible.

Result are sensitive to small pertubations.

Safety and Privacy concerns exists.

Lack of explainability of model.

Slow process. Training large data sets eates up time.
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Quantum Mechanics for Quantum Computation

A qubit is the fundamental data unit of a quantum computer.

A qubit |ψ⟩ coexists in the states |0⟩ and |1⟩.
Physical Interpretation

|ψ⟩ = α|0⟩+ β|1⟩. (1)

|0⟩ and |1⟩ are unit vectors and form an orthonormal basis.

|0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
.

Definition (Inner Product)

⟨ψ|φ⟩ =
[
α∗ β∗

] [γ
δ

]
= α∗γ + β∗δ
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Postulates of Quantum Mechanics

Definition (Hilbert Space)

A vector space with distance function and inner product among it’s elements.

Definition (State Space)

The Hilbert space corresponding to an isolated physical system.

Definition (State Vector)

The state of the system.

Postulate (State Space)

The state vector can be completely represented by a unit vector in the state space.
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Postulates of Quantum Mechanics

Definition (Hermitian operator)

A Hermitian operator H is its own Hermitian conjugate, i.e H = H∗.

Definition (Observable)

A Hermitian operator O which describes the projective measurement. It acts upon the
state space of the system to be measured and is represented as

O =
∑
λ

λPλ

and Pλ is the projector with eigenvalue λ ∈ eigenspace of O.
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Postulates of Quantum Mechanics

Definition (Unitary Transformation)

A tranformation that preserves inner product. So, a unit vector remains a unit vector
after the tranformation. It is denoted by U and it satisfies

U∗U = UU∗ = I .

Postulate (Measurement)

A measurement on O will result in the eigenvalues λ with the probability of collapsing
to λ is

pλ = ∥Pλ ⟨ψ| ∥2 = ⟨ψ|Pλ|ψ⟩ .

resulting in the irreversibly collapse of the state of system to

1
√
pλPλ ⟨ψ|

.
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Postulates of Quantum Mechanics

Postulate (Evolution I)

The system evolution is governed by the Schrödinger’s equation

H ⟨ψ(t)| = iℏ
d

dt
⟨ψ(t)| .

Postulate (Evolution II)

If ⟨ψ0| , ⟨ψ1| describes the state of system at times t0, t1 respectively then the evolution
of system depends only on t0 and t1. It is given by

⟨ψ1| = U ⟨ψ0| .

So far, we have studied one-qubit systems. For multi-qubit systems we introduce the
following notation.
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Postulates of Quantum Mechanics

Definition (Tensor Product (aka Kronecker Product))

For a given m, n dimensional vector spaces V ,W . The tensor product of V with W
(denoted by V ⊗W ) is an mn dimensional vector spaces with elements are linear com-
binations of tensor products ⟨v | ⊗ ⟨w |.

We can also define the tensor product of linear operators A,B over vector spaces V ,W
as

(A⊗ B)(⟨v | ⊗ ⟨w |) = A ⟨v | ⊗ B ⟨w | .

Postulate (Composition)

For n isolated systems with states ⟨ψ0| , ⟨ψ1| , . . . , ⟨ψn−1|, the state of the composite
system is given by ⟨ψ0| ⊗ ⟨ψ1| ⊗ · · · ⟨ψn−1|
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Quantum Machine Learning (QML)
Quantum-Assisted Machine Learning (QAML)

Quantum Models not feasible in near future.

A near-term future quantum device will contain 100-1000 qubits.

Possible applications
▶ Hard and out of scope problems for ML. E.g., generative models for semi-supervised

and unsupervised ML
▶ Datasets with quantum-like connections, turning quantum computers absolutely nec-

essary. E.g., cognitive sciences
▶ Hybrid algorithms with a difficult execution step for ML pipeline.
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Opportunities in Quantum-Assisted Machine Learning
Unsupervised Learning - Quantum Devices for Sampling

Incredible amount of unlabelled data available.

There is a need to extract patterns within such data

Scientists do not always know what patterns look for

A need arises for a machine which is capable of extracting order from disorder.
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Generative Models

Generative Model can learn the joint probability among the variables.

If this is achieved, similar data as the training set can be generated.

Positive results for high-dimensional data, with correct inference of multi-modal
distributions over it.

The intractable step is computation of expectation values under a complex distribu-
tion and this step is a part of each iteration and data point for which Markov chain
Monte Carlo (MCMC) techniques are being used.

Quantum Gibbs distributions are such alternative to MCMC
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Cognitive Sciences - Exploiting Datasets

A quantum model can significantly reduce the computational resources, e.g, memory
needed to model a data set.

Real-life data sets where quantum model is simple compared with classical models
must be identified.
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Cognitive Sciences - Exploiting Datasets
The Two-Stage Gambling Paradigm

In the first stage, people were required to gamble. If they win they get x amount
of money, if they lose they lose y amount of money (both are equally likely).
Before learning about the results, participants were asked whether they will ‘plan’
to gamble again (if they win and if they lose).
Then after learning the first stage results, final decision was made about playing the
second stage was made.

Gamble Choice Proportions

Win Loss Plan Win Plan Loss Final Win Final Loss

0.8 1 0.25 0.26 0.2 0.35
0.8 0.4 0.76 0.72 0.69 0.73
2 1 0.68 0.68 0.6 0.75
2 0.4 0.84 0.86 0.76 0.89

Table: The Two-Stage Gambling Paradigm1

1
J. Busemeyer, Z. Wang, and R. Shiffrin, “Bayesian model comparison favors quantum over standard decision theory account of dynamic incon-

sistency,” Decision, vol. 2, pp. 1–12, 01 2015.
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The Two-Stage Gambling Paradigm
The Quantum Model

Using quantum theory, this game has 4 events {WA,WR, LA, LR} where W (L)
stands for win (lose) in first stage and A(R) stands for accept (reject) the second
round.

The person is actually in a superposition of these states

|ψ⟩ = ψWA |WA⟩+ ψWR |WR⟩+ ψLA |LA⟩+ ψLR |LR⟩

where |ψWA|2 is the probability that the person belives he won in the first stage and
will accept the second stage.

The initial state is ψ0 which has some distribution over these 4 amplitudes.

Uncertainty in the first stage results is solved at the second stage after learning the
result. Now that state is ψ1 = ψW = |1100⟩ (ψL = |0011⟩) if win (lose).

The payoffs can be achieved using a unitary matrix which rotates ψ towards the
gamble or away from it. The final state is

ψD = Uψ
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Challenges in Quantum-Assisted Machine Learning

Compatibility Issues in Hybrid Tech

Robustness to Noise

The Curse of Limited Connectivity

Complex Dataset Representation
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Quantum-Assisted Helmholtz Machine (QAHM)

A hybrid quantum–classical ML which can potentilly handle real-world datasets.

Its made of a generator network and a recognition network using the notion of
stochastic hidden variables.

Classification can also be implemented in QAHM.
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For Further Reading

C. L. Franklin De Lima Marquezino, Renato Portugal, A Primer on Quantum Com-
puting.
SpringerBriefs in Computer Science, Springer International Publishing, 1 ed., 2019.

M. Benedetti, J. Realpe-Gómez, and A. Perdomo-Ortiz, “Quantum-assisted
helmholtz machines: A quantum–classical deep learning framework for industrial
datasets in near-term devices,” Quantum Science and Technology, vol. 3, p. 034007,
may 2018.

A. Perdomo-Ortiz, M. Benedetti, J. Realpe-Gómez, and R. Biswas, “Opportunities
and challenges for quantum-assisted machine learning in near-term quantum com-
puters,” Quantum Science and Technology, vol. 3, p. 030502, jun 2018.

J. Busemeyer, Z. Wang, and R. Shiffrin, “Bayesian model comparison favors quantum
over standard decision theory account of dynamic inconsistency,” Decision, vol. 2,
pp. 1–12, 01 2015.
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