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Abstract—Nowadays, a general purpose quantum computer
seems closer to reality than ever before, yet, it is so far. Can
the near-term quantum technologies create an impact on ML
and guide us towards quantum supremacy? This report contains
an introduction to machine learning and quatum mechanics.
We also discuss a quantum algorithm to solve linear system
of equations and then move onto discussing Quantum-Assisted
Machine Learning, its the opportunities and challenges in the
near-term future.

Index Terms—quantum computing, machine learning, quan-
tum machine learning, quantum-assisted machine learning, near-
term quantum computers, quantum-assisted Helmholtz machines

I. INTRODUCTION

Quantum Computing truly has the potential but, when will
it live up to the (rising) expectations? There has been a steady
progress in this field, from increasing qubits to the increase
in algorithms and design techniques. Popular quantum com-
puting algorithms, e.g, Shor’s algorithm, Grover’s algorithm,
Deutsch-Jozsa, BB84 Protocol, Quantum Fourier Transform
and others have all been instrumental achievements in their
fields. But in Machine Learning there is no such defining al-
gorithm yet. Is their a feasible Quantum Approach for Machine
Learning (ML) in near-term future? The estimated number of
qubits in near-term future is 100-1000 which unfortunately is
not sufficient for large ML tasks. We will focus on quantum
approaches on a very promising field of unsupervised ML after
getting comfortable with all the basics.

II. MACHINE LEARNING

Machine Learning (ML) is the practice of estimating models
that make predictions on ‘new’ data using available data. This
is especially helpful when the actual model is very complex
and no known algorithms can discover such model or they
take large amount of time or other resources.

A. Machine Learning Paradigms

1) Supervised ML: In supervised ML, we ‘supervise’ the
model by training it on a labelled data set. The data set
contains generally large number of ‘testcases’ where both
input value and the correct output value is specified. The
applications of this approach includes
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a) Classification Problems: In such problems, the model
classifies the input into some property. This classification is
either qualitative (Categorical) or quantitative (Numerical) .

Examples of qualitative property — gender, species, bug
severity.

Examples of quantitative property — age, height, count of
objects.

b) Regression Problems: In these problems, the model
estimates a relation between the output variables using the
given input variables (generally independent)

2) Unsupervised ML: In unsupervised ML, there is no
labelled data, the model takes only input variables. The model
will then find a relation between input variables. The biggest
benefit of unsupervised versus supervised ML is its ability to
gain knowledge without needing expensive labelled data. Its
applications includes

a) Clustering: Clustering is used to group given data by
finding a pattern between them

b) Association: Association is used to discover relations
between input variables of some data set.

3) Semi-Supervised ML: Here, some part of data is labelled
whereas the other part is not. So, using unsupervised tech-
niques a model can label unlabelled data and feed it into a
supervised model.

4) Reinforcement Learning: Reinforcement Learning (RL)
algorithms are interested in learning the behaviour of intel-
ligent agents in an environment which maximises their total
reward. The focus is on the explore-exploit trade-off, whether
to explore other options or exploit the current option. RL has
huge potential applications some of which include marketing
and advertising, game solving, self driving cars.

B. Issues with ML

o Lack of good quality data sets.

« Possibilty of errors e.g., underfitting or overfitting possi-
ble.

o Result are sensitive to small pertubations.

o Safety and Privacy concerns exists.

o Lack of explainability of model.

o Slow process. Training large data sets eates up time.

Quantum Computing (QC) can improve a lot of these issues.



III. QUANTUM MECHANICS FOR QUANTUM
COMPUTATION

A quantum bit abbreviated as qgubit, is the fundamental data
unit of a quantum computer. The notion of qubit is analogous
to bit from the classical computers. A bit has two states O or
1 whereas a qubit |1)) coexists in the states |0) and |1) i.e. it
|1} is a linear combination |0) and |1),

[¥) = al0) + BI1). (D

|0) and |1) are unit vectors and form an orthonormal basis.
They are standard-basis vectors also denoted by

[ on-f]

If [1)) = a|0) + B|1) and |p) = ~v[0) + J[1) and then
Definition 3.1 (Inner Product):

0) =
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where * is the complex conjugate operation.
Definition 3.2 (Outer Product):

=5 b =[5 5]

Definition 3.3 (Norm of a vector):

1= V{9l

A. Postulates of Quantum Mechanics

Definition 3.4 (Hilbert Space): A vector space with distance
function and inner product among it’s elements.

Definition 3.5 (State Space): The Hilbert space correspond-
ing to an isolated physical system.

Definition 3.6 (State Vector): The state of the system.

a) State Space: The state vector can be completely

represented by a unit vector in the state space.

Definition 3.7 (Hermitian adjoint): H and H* are Hermitian
conjugates of each other when

(D|H|T) = (H*®|).

Definition 3.8 (Hermitian operator): A Hermitian operator
H is its own Hermitian conjugate, i.e H = H*.

Definition 3.9 (Observable): A Hermitian operator O which
describes the projective measurement. It acts upon the state
space of the system to be measured and is represented as

O:ZAP,\
A

and P, is the projector with eigenvalue \ € eigenspace of O.

Definition 3.10 (Unitary Transformation): A tranformation
that preserves inner product. So, a unit vector remains a unit
vector after the tranformation. It is denoted by U and it
satisfies

U'U=U0U"=1.

b) Measurement: A measurement on O will result in
the eigenvalues A with the probability of collapsing to \ is

pa = [[Pa (0l I? = (@I Paly) -
resulting in the irreversibly collapse of the state of system to
1

VPP (]
c¢) Evolution I: The system evolution is governed by the
Schrodinger’s equation

H (5(0) = i ()]

d) Evolution II: If (1|, (11| describes the state of
system at times tg, t; respectively then the evolution of system
depends only on ¢y and ¢;. It is given by

(1] = U (Yol .

So far, we have studied one-qubit systems. For multi-qubit
systems we introduce the following notation.

Definition 3.11 (Tensor Product (aka Kronecker Product)):
For a given m, n dimensional vector spaces V, W. The tensor
product of V' with W (denoted by V ® W) is an mn dimen-
sional vector spaces with elements are linear combinations of
tensor products (v| ® (w|.

We can also define the tensor product of linear operators A, B
over vector spaces V, W as

(A@ B)({v] @ (w]) = A(v|® B (w].

e) Composition: For n isolated systems with states
(ol , (1], ..., (¥n—1|, the state of the composite system is
given by (Yo| ® (1] ® -+ (Y1
Now, let’s look at the power of quantum algorithms with an
example.

IV. QUANTUM ALGORITHM FOR LINEAR SYSTEMS OF
EQUATIONS

A. Problem

Given a matrix A (/N x N and condition number ) and a
vector I;, let 7 be the solution of AT = b. Consider, a situation
where the actual Z is not needed and the problem is to calculate
Z*MZ for some matrix M.

The fastest known classical algorithm is N./k. But [1]
shows a quantum approach when the runtime is polynomial in
log(N) and .

B. Outline of the approach

First, represent b as a quantum state

N
(b = Zbi /i) .

Next if A is Hermitian, construct a unitary operator e
by transforming A. Here, A is assumed as efficiently row
computable and s sparse. If A is not Hermitian then construct
P 0 A ., % - -
A= {A* 0] S Aj=A= [b o} Sy=[0 4

1At



where A is Hermitian.

Then, we apply ¢4 to |b) to find the linear combinations
at each time ¢. This is followed by decomposing |b) in the
eigenspace using phase estimation [2] to get the eigenvalues.

Let |u;) be the eigenvectors of A with eigenvalues ;. Now,
the system’s state is close to

Zﬂj |uj) -

So, a linear map say B which takes |A;) to a multiple of
)\;1 |A;) is required to undo the phase estimation to get a
state proportional to

Zﬁj uz) |A;) and [b) =

N
> BiA ! uy) = A7 [b) = |z)
j=1

Finally, the measurement with expectation value (x|M|z)
gives the answer.

V. FUTURE OF QUANTUM MACHINE LEARNING

In IV, we saw a QC technique replacing the entire model.
Though it is way more efficient and scalable than classical
methods, it is not feasible in near future where a quantum
device will contain 100-1000 qubits. Even after the exponential
speed-up, large-scale models will require millions of qubits
and so these algorithms have no practical value (atleast in the
near-term).

So for near-term quantum computers, the best way to
proceed is for quantum computers to assist classical ML
models. This is called as Quantum-Assisted Machine Learning
(QAML).

There are three things where QAML can focus according
to [3] that has the potential for killer applications

« Hard and out of scope problems for ML. E.g., generative
models for semi-supervised and unsupervised ML

« Datasets with quantum-like connections, turning quantum
computers absolutely necessary. E.g., cognitive sciences

o Hybrid algorithms with a difficult execution step for ML
pipeline.

VI. OPPORTUNITIES IN QUANTUM-ASSISTED MACHINE
LEARNING (QAML)

A. Unsupervised Learning — Quantum Devices for Sampling

Today, there is an incredible amount of unlabelled data
available. Courtesy internet, satellite and medical imaging,
stock market time series and more due to ever increasing use
of computers. There is a need to extract patterns within such
data — scientists do not always know what patterns look for,
these patterns are essential for the development of science and
humanity as a whole. But, it is beyond the human capacity to
label all this data. So, a need arises for a machine which is
capable of extracting order from disorder.

a) Generative Model: Generative Model can learn the
joint probability among the variables. If this is achieved, sim-
ilar data as the training set can be generated. A popular design
of such models is using layers of stochastic ‘hidden variables’
. It has shown positive results for high-dimensional data, with
correct inference of multi-modal distributions over it. Sadly,
the exact guess is not possible for non-trivial topologies.
Here, the intractable step is computation of expectation values
under a complex distribution and this step is a part of each
iteration and data point. Markov chain Monte Carlo (MCMC)
techniques are being used but they face various issues e.g.,
slow mixing problem. QAML can possibly solve this problem
as they are capable of sampling from probability distributions.
Quantum Gibbs distributions are such alternative to MCMC.

B. Cognitive Sciences - Exploiting Datasets

A quantum model can significantly reduce the computa-
tional resources, e.g, memory needed to model a data set. So,
real-life data sets where quantum model is simple compared
with classical models must be identified.

Cognitive Sciences has candidates to be such dataset, let’s
discuss one such example

1) The Two-Stage Gambling Paradigm: In the first stage,
people were required to gamble. If they win they get x amount
of money, if they lose they lose ¥ amount of money (both are
equally likely).

Before learning about the results, participants were asked
whether they will ‘plan’ to gamble again (if they win and
if they lose). Then after learning the first stage results, final
decision was made about playing the second stage was made.
The observations are shown in I. ‘Gamble’ column has the
payoff. Plan Win (Lose) is the fraction of people planning to
take the second stage before learning if they Win (Lose) the
first stage. Final Win (Lose) is the fraction of people planning
to take the second stage after learning they Win (Lose) the
first stage.

As visible in I, the results are dynamically inconsistent. The
participants changed their plans; whether they won or lose they
thought of rejecting the idea of second stage. This violates the
law of total probability!

Gamble Choice Proportions
Win  Loss Plan Win  Plan Loss  Final Win  Final Loss
0.8 1 0.25 0.26 0.2 0.35
0.8 0.4 0.76 0.72 0.69 0.73
2 1 0.68 0.68 0.6 0.75
2 0.4 0.84 0.86 0.76 0.89
TABLE I

THE TWO-STAGE GAMBLING PARADIGM

Let’s see, the way this way resolved using Quantum Model
a) The Quantum Model: Unlike the classical models
which uses inconsistent utility functions for the explanation
of behaviour; the quantum model assumes a consistent utility
function is used by participants for both plan and final choices
and it also considers the first stage results. Here, the dynamic



inconsistency emerges from uncertainty in the first stage
results which is solved at the second stage.

Using quantum theory, this game has 4 events
{WA,WR,LA, LR} where W(L) stands for win (lose)
in first stage and A(R) stands for accept (reject) the
second round. This represent the four-dimensional vector
space with basis vectors as {|WA),|WR),|LA),|LR)}.
The person is actually in a superposition of these states
V) = Ybwa [WA) Ybwr|WR),¢ra|LA),Yrr|LR) where
|hw a|? is the probability that the person belives he won in
the first stage and will accept the second stage.

The initial state is 1y which has some distribution over
these 4 amplitudes. As, the first stage result is not known
we can take a uniform distribution, ie., |¢;;| = % for all
4 45 pairs. Uncertainty in the first stage results is solved at
the second stage after learning the result. Now that state is
1 = Yw = [1100) (3 = |0011)) if win (lose).

The payoffs can be achieved using a unitary matrix which
rotates 1 towards the gamble or away from it. The final state
is

Yp = Uy

where U will depend on the utilary functions. The inconsis-
tency can be seen using the projection matrix.

Such identification of quantum-like behaviours will be a
game changer. Even better, it will make quantum technologies
unique in their own applications and thus becoming irreplaca-
ble.

VII. CHALLENGES IN QUANTUM-ASSISTED MACHINE
LEARNING

A. Compatibility Issues in Hybrid Tech

Information sharing between the classical and quantum
might be a challenge, as the samples should from both models
should match. In training of restricted Boltzmann machines,
stochastic gradient descent algorithm that performs parameter
updates requires two major component: ‘positive phase’ which
can be estimated efficiently using classical sampling and the
‘negative phase’ has to be assisted with quantum sampling. It
is necessary to match and control all the parameters used for
describing probability distributions of both the models as the
components are part of the same equation and originate from
same model. A lot depends on Gibbs distribution temperature
as that is the sampling source. This temperature depends on
many factors so it is not completely under our control. This
challenge can be resolved using hardware that can create
many quantum Gibbs states at anytime, but this may open
up other issues (See VII-B). A better approach is to carry out
a proper estimation of temperature, so that the techniques can
be restarted.

B. Robustness to Noise

Creating quantum Gibbs states with a quantum annealer is a
very complicated process due to intrinsic noise in parameters
of programming. Dynamical effects and freezing on quantum
distributions leads to non-equilibrium distributions away from

required. This intrinsic noise can anyway shift the state away
from desired state. Seeding quantum devices using classical
Gibbs samplers was a suggested solution, but its major disad-
vantage is that the model must have a specific form irrespective
of the design of the quantum device otherwise there would be
a lot of post-processing.

Fully-visible Boltzmann machine (FVBM) is a potential
near-term solution. Here, we assume that Gibbs-like distri-
bution sends samples but actually the model is working at
first and second moment statistics level. Actually, if there
is a positive projection in the direction of actual gradient,
stochastic gradient descent’s estimated gradients will work.

A drawback in this approach is that a same device needs to
be used for ML tasks.

C. The Curse of Limited Connectivity

The curse of limited connectivity is a problem of qubit-qubit
interactions not on-device which has an additional computa-
tional overhead and of setting the parameters to ensure correct
sampling and mapping.

D. Complex Dataset Representation

Common datasets such as images have a large amount of
non-binary variables. A simple binarization of data will rapidly
eat up 100-1000 qubits. So, instead QAML algorithms do
amplitude coding. But this a slow process as just reading all
amplitudes will effect speed.

Semantic Binarization may be useful, where the encoding
is a abstract binary representations of continuous variables.
Possibly, implemented using hybrid models.

VIII. QUANTUM-ASSISTED HELMHOLTZ MACHINE
(QAHM)

A hybrid quantum—classical ML which can potentilly handle
real-world datasets. Its made of a generator network and a
recognition network using the notion of stochastic hidden
variables. Classification can also be implemented in QAHM.
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