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Polynomials I
Introduction

Definition (Monomial)

A monomial in (x1, x2, . . . , xn), denoted by xα is defined as follows

xα = xα1
1 · x

α2
2 · · · x

αn
n (αi ∈ Z+ and α = (α1, α2, . . . , αn)) (1)

Note, when α = (0, 0, . . . , 0) we take xα = 1. The collection of all such α is denoted by Zn
≥0.

Definition (Total degree of a monomial)

The total degree of a monomial, denoted by |α| is defined as

|α| = α1 + α2 + · · ·+ αn (2)
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Polynomials II
Introduction

Definition (Polynomial)

A polynomial f in (x1, x2, . . . , xn) is a finite sum denoted by

f (x1, x2, . . . , xn) = f (x) = f =
∑
α

aαx
α (where aα ∈ F and α = (α1, α2, . . . , αn)) (3)

Here, aα is the coefficient of xα and aαx
α is called a term of f provided aα ̸= 0.

Definition (Total degree of a polynomial)

The maximum total degree of a monomial of f which has non-zero coefficient, i.e.

deg(f ) = max
α̸=0
|α| (4)

The collection of all polynomials in (x1, x2, . . . , xn) with coefficients in F forms a commutative ring
(more specifically a polynomial ring) which is denoted by F[x1, x2, . . . , xn].
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Polynomials III
Introduction

Example

f = 4xy2z + 4z2 − 5x3 + 7x2z2 ∈ Q[x , y , z ]

f = sum{(4, (1, 2, 1)), (4, (0, 0, 2)), (−5, (3, 0, 0)), (7, (2, 0, 2))}
(5)

What about order?
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Monomial Orderings
Motivation

Definition (Monomial Ordering)

A monomial ordering is a relation> on monomials xα, α ∈ Zn
≥0 which satisfies the below properties.

> is a total order, i.e., for β ∈ Zn
≥0 exactly one of the following happens

xα > xβ or xα < xβ(≡ xβ > xα) or xα = xβ(≡ xα ≯ xβ , xβ ≯ xα) (6)

α > β, γ ∈ Zn
≥0 ⇒ α+ γ > β + γ

> is a well-ordering, i.e.,

for non-empty A ⊆ Zn
≥0 ⇒ ∃!α such that β ≥ α for β ∈ Zn

≥0 (7)

or equivalently, every strictly decreasing sequence {α(i)} eventually terminates.
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Monomial Orderings
Examples

Definition (Lexicographic Order)

For α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈ Zn
≥0, α >lex β if leftmost non-zero entry of

α− β is positive.

Definition (Graded Lex Order)

For α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈ Zn
≥0, α >grlex β if |α| > |β| or (|α| = |β|

and α >lex β)

Definition (Graded Reverse Lex Order)

For α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈ Zn
≥0, α >grevlex β if |α| > |β| or (|α| = |β|

and rightmost non-zero entry of α− β is negative)
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Examples

f of 5 with respect to grlex order is as follows,

Example (Lexicographic Order)

f = −5x3 + 7x2z2 + 4xy2z + 4z2

f = sum{(−5, (3, 0, 0)), (7, (2, 0, 2), (4, (1, 2, 1)), (4, (0, 0, 2)))}
(8)

Example (Graded Lex Order)

f = 7x2z2 + 4xy2z − 5x3 + 4z2

f = sum{(7, (2, 0, 2), (4, (1, 2, 1)), (−5, (3, 0, 0)), (4, (0, 0, 2)))}
(9)

Example (Graded Reverse Lex Order)

f = 4xy2z + 7x2z2 − 5x3 + 4z2

f = sum{(4, (1, 2, 1)), (7, (2, 0, 2), (−5, (3, 0, 0)), (4, (0, 0, 2)))}
(10)
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Monomial Ordering-Specific Terminology
For a non-zero f =

∑
α aαx

α, and a monomial order >

Definition (multidegree of f )

multideg(f ) = max
w.r.t. >

(α ∈ Zn
≥0|aα ̸= 0) (11)

Definition (leading coefficient of f )

LC(f ) = amultideg(f ) ∈ F (12)

Definition (leading monomial of f )

LM(f ) = xmultideg(f ) (13)

Definition (leading term of f )

LT(f ) = LC(f ) · LM(f ) (14)
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Division Algorithm I

Theorem (Divison Algorithm (Multivariate Polynomials))

For any f ∈ F[x1, x2, . . . , xn],F = (f1, f2, . . . , fs) where fi ∈ F[x1, x2, . . . , xn] on a monomial order,

∃qi , r ∈ F[x1, x2, . . . , xn] where either r = 0 or r =
∑
α

aα · xα, LT fi ∤ xα,∀i , α.

Moreover, qi · fi ̸= 0⇒ multideg(f ) ≥ multideg(qi · fi )

Note, the remainder and quotients are not uniquely determined, they may change with permutation
of F . Applying the division algorithm on f = xy2 − x over F = (f1, f2) = (y2 − 1, xy2 − x) gives
(q1, q2, r) = (x , 0, 0)⇒ f ∈ ⟨f1, f2⟩ whereas, over F = (f2, f1) gives (q1, q2, r) = (y , 0,−x + y).
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The Division Algorithm I

Algorithm 1 Polynomial Division (Single Variable)1

Input: f , g where f , g ∈ F[x ], g ! = 0
Output: q, r

q ← 0
r ← f
while r ̸= 0 and LT(g)| LT(r) (a|b is a divides b) do

q ← q +
LT(r)

LT(g)

r ← r − LT(r)

LT(g)
g

end while
return q, r

1
Donal O’Shea David A. Cox, John Little. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.
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Frame Title

Algorithm 2 Polynomial Division (Multiple Variable)2

Input: F = (f1, f2, . . . , fs ) and f where f , fi ∈ F[x1, x2, . . . , xn ]
Output: q1, q2, . . . , qs , r

qi ← 0, ∀i
r ← 0
p ← f
while p ̸= 0 do

i ← 1
division ← false
while i ≤ s and division = false do

if LT(fi )| LT(p) then

qi ← qi +
LT(p)

LT(fi )

p ← p −
LT(p)

LT(fi )
fi

division ← true
else

i ← i + 1
end if

end while
if division = false then

r ← r − LT(p)
p ← p − LT(p)

end if
end while
return q1, q2, . . . , qs , r

2
Donal O’Shea David A. Cox, John Little. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.
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Affine Varieties

Definition (Affine Space)

An n−dimensional affine space over F is a set denoted by Fn and defined as follows

Fn = {(a1, a2, . . . , an) | ai ∈ F} (15)

Now, a polynomial f can be defined as a function f : Fn → F, where each xi gets replaced by ai .

Definition (Affine Varieties)

An affine variety V (over polynomials f1, f2, . . . , fs) is defined as follows

V = V(f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ Fn | fi (a1, a2, . . . , an) = fi (a) = 0 ∀i} (16)
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Varieties I
Examples

Example

Consider, multivariate polynomials with total degree = 1 (i.e., linear polynomials).

Say, fi (x) = αi0 +
n∑

j=1

αij · xj where, αij ∈ F.

Now, this can be converted to a linear algebra problem of solving system of linear equations Ax = b
where, (i , j)th entry of A is given by [Ai,j ] = αij and (i)th entry of b is given by [bi ] = −αi0 .
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Varieties II
Examples

Example

§2 Affine Varieties 9

examples. To illustrate this, consider the variety V(xz, yz). One can easily check that
the equations xz = yz = 0 define the union of the (x, y)-plane and the z-axis:

x

y

z

Hence, this variety consists of two pieces which have different dimensions, and one
of the pieces (the plane) has the “wrong” dimension according to the above intuition.

We next give some examples of varieties in higher dimensions. A familiar case
comes from linear algebra. Namely, fix a field k, and consider a system of m linear
equations in n unknowns x1, . . . , xn with coefficients in k:

(1)

a11x1 + · · ·+ a1nxn = b1,
...

am1x1 + · · ·+ amnxn = bm.

The solutions of these equations form an affine variety in kn, which we will call a
linear variety. Thus, lines and planes are linear varieties, and there are examples
of arbitrarily large dimension. In linear algebra, you learned the method of row re-
duction (also called Gaussian elimination), which gives an algorithm for finding all
solutions of such a system of equations. In Chapter 2, we will study a generalization
of this algorithm which applies to systems of polynomial equations.

Linear varieties relate nicely to our discussion of dimension. Namely, if V ⊆ kn is
the linear variety defined by (1), then V need not have dimension n−m even though
V is defined by m equations. In fact, when V is nonempty, linear algebra tells us that
V has dimension n− r, where r is the rank of the matrix (aij). So for linear varieties,
the dimension is determined by the number of independent equations. This intuition
applies to more general affine varieties, except that the notion of “independent” is
more subtle.

Some complicated examples in higher dimensions come from calculus. Sup-
pose, for example, that we wanted to find the minimum and maximum values of
f (x, y, z) = x3 + 2xyz − z2 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 1.
The method of Lagrange multipliers states that ∇f = λ∇g at a local mini-

Figure: V(xz , yz) - a union of a line and a planea

a
Donal O’Shea David A. Cox, John Little. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.
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Varieties
Motivation

The questions of interests concerning an affine variety V = V(f1, f2, . . . , fs) are

Consistency Is there a way to determine if V is non-empty. Then, we will know if the system
fi (x) = 0 is consistent.

Finiteness Is there a way to determine if V is finite. Then, the next problem is about whether
we can find all such solutions.

Dimension Is there a way to determine the “dimension” of V .
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Ideals I

Definition (Ideal)

A subset I ⊆ F[x1, x2, . . . , xn] which satisfies the below properties is called an Ideal.

0 ∈ I

f (x), g(x) ∈ I ⇒ f (x) + g(x) ∈ I ,∀x ∈ Fn

f (x) ∈ I ⇒ h(x)f (x) ∈ I ,∀h(x) ∈ F[x1, x2, . . . , xn] and ∀x ∈ Fn

As I is subset, its operations are same as defined over F[x1, x2, . . . , xn].
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Ideals II

Definition (Ideal of an affine variety)

The set I(V ) is the ideal of an affine variety.

I(V ) = {f ∈ F[x1, x2, . . . , xn] | f (a1, a2, . . . , an) = 0,∀a ∈ V } (17)

It is trivial to show that I(V ) is indeed an ideal, as for any a ∈ V :

0 ∈ I(V ) as 0(a) = 0,∀a ∈ V

f , g ∈ I(V )⇒ f (a) = g(a) = 0⇒ f (a) + g(a) = 0⇒ f + g ∈ I(V )

f ∈ I(V )⇒ f (a) = 0⇒ h(a)f (a) = 0⇒ hf ∈ I(V )
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Ideals III

Lemma

For f1, f2, . . . , fs ∈ F[x1, x2, . . . , xn], ⟨f1, f2, . . . , fs⟩ is the ideal generated by f1, f2, . . . , fs . Also,
f1, f2, . . . , fs is a generating set of ⟨f1, f2, . . . , fs⟩.

I = ⟨f1, f2, . . . , fs⟩ =

{
s∑

i=1

hi · fi |hi ∈ F[x1, x2, . . . , xn]

}
(18)

It is trivial to show that ⟨f1, f2, . . . , fs⟩ is indeed an ideal, use the representation 18 and verify the
three properties.

Definition (Finitely Generated Ideal)

An ideal I is finitely generated if

∃f1, f2, . . . , fs ∈ F[x1, x2, . . . , xn] such that I = ⟨f1, f2, . . . , fs⟩ (19)
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Ideals
Motivation

The questions of interests concerning an ideal I ⊆ F[x1, x2, . . . , xn] are
Ideal Description Does every ideal I ⊆ F[x1, x2, . . . , xn] has a finite generating set.

Ideal Membership If I = ⟨f1, f2, . . . , fs⟩, is there a way to determine if f ∈ I .

Nullstellensatz Is there an exact relation between ⟨f1, f2, . . . , fs⟩ and I(V(f1, f2, . . . , fs)) where the
set I(V ) is the ideal of an affine variety given by,

I(V ) = {f ∈ F[x1, x2, . . . , xn] | f (a1, a2, . . . , an) = 0,∀a ∈ V } (20)
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Gröbner Bases I

Theorem (Hilbert Basis Theorem (Ideal Description Problem))

Every ideal I ⊆ F[x1, x2, . . . , xn] has a finite basis.

Definition (Gröbner Basis)

For a fixed monomial ordering on F[x1, x2, . . . , xn] and
G = {g1, g2, . . . , gt}, G is called a Gröbner basis of a non-zero ideal I ⊆ F[x1, x2, . . . , xn] if

⟨LT(I )⟩ = ⟨LT(g1), LT(g2), . . . , LT(gt)⟩ (21)

where,
LT(I ) = {aαxα|∃f ∈ I \ {0} such that LT(f ) = aαx

α} (22)

The Gröbner basis of I = {0} is defined as ∅.
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Gröbner Bases II

Proposition (Property of Gröbner Bases)

For a Gröbner basis G = {g1, g2, . . . , gt} for an ideal I ⊆ F[x1, x2, . . . , xn] and a given f ∈
F[x1, x2, . . . , xn], ∃!r ∈ F[x1, x2, . . . , xn] such that no term of r is divisible by LT(gi ) for any i .
The uniqueness of remainder is the reason the ordered tuple we divide with is a set.

Theorem (Ideal Membership Problem)

For a Gröbner basis G = {g1, g2, . . . , gt} for an ideal I ⊆ F[x1, x2, . . . , xn],

f ∈ I ⇔ remainder on division of f by G is zero. (23)
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Computation of Gröbner Basis I

Definition

f
F
is the remainder on division of f by F = (f1, f2, . . . , fs).

xγ = lcm(LM(f ), LM(g)), i.e., γi = max(αi , βi ) where multideg(f ) = α,multideg(g) = β.

S(f , g) =

(
xγ

LT(f )
· f − xγ

LT(g)
· g

)
is the S-polynomial of f , g .

Theorem (Buchberger’s Criterion)

A basis G = {g1, . . . , gt} is a Gröbner basis of I ⊆ F[x1, x2, . . . , xn] iff S(gi , gj)
G
= 0,∀i , j (i ̸= j)

Theorem (Buchberger’s Algorithm)

For a non-zero ideal I = ⟨f1, f2, . . . , fs⟩, Gröbner basis for I is constructed as follows:
Given a basis, we can extend the basis to a Gröbner basis by repeatedly adding the non-zero
remainders of S-polynomials between pairs of basis until Buchberger’s Criterion is satsified.

Param Rathour (IIT Bombay) Computational Commutative Algebra and Geometry Autumn 2022-23 23 / 34



Computation of Gröbner Basis II

Algorithm 3 Buchberger’s Algorithm3

Input: F = (f1, f2, . . . , fs) where fi ’s are non-zero
Output: G = (g1, g2, . . . , gt) where G is a Gröbner Basis for I

G ← F
repeat

G ′ ← G
for all pairs {p, q} where p, q ∈ G ′, p ̸= q do

r ← S(p, q)
G ′

if r ̸= 0 then
G ← G ∪ {r}

end if
end for

until G = G ′

return G

3
Donal O’Shea David A. Cox, John Little. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra.

Param Rathour (IIT Bombay) Computational Commutative Algebra and Geometry Autumn 2022-23 24 / 34



Reduced Gröbner Basis

Definition (Reduced Gröbner Basis)

A reduced Gröbner basis G = {g1, g2, . . . , gt} of an ideal I ⊆ F[x1, x2, . . . , xn] is such that
∀i , LC(gi ) = 1 and no monomial of gi belongs to ⟨LT(G \ {gi})⟩.
Also, a reduced Gröbner basis is unique for an ideal subject to monomial ordering.

Such, a Gröbner basis can be constructed by repeatedly removing gi where LT(gi ) ∈ ⟨LT(G \{gi}).
These new sets are also a Gröbner basis.
Note, the process of computing Gröbner basis is very expensive but once computed, we can solve
plethora of applications as we will see in next parts.
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Elimination Theory I

Now, the key to eliminating variables from systems of polynomial equations lies in two step

Elimination Step With which we can eliminate certain variables from the equation to get “simpler”
equations to work with and find solutions.

Extension Step Once we have solutions for “simpler” equations we can extend these to get solu-
tions of original equations.

Definition (Elimination Ideal)

For an ideal I = ⟨f1, f2, . . . , fs⟩ ⊆ F[x1, x2, . . . , xn], the l−th elimination ideal Il is the ideal in
F[xl+1, xl+2, . . . , xn] defined by

Il = I ∩ F[xl+1, xl+2, . . . , xn] (24)

Intuitively, Il consists of functions in I which eliminate the variables x1, x2, . . . , xl . Hence, the
elimination step is to determine elements of Il .
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Elimination Theory II

Theorem (The Elimination Theorem)

For an ideal I =⊆ F[x1, x2, . . . , xn] and its Gröbner basis G with respect to lex order (x1 > x2 >
· · · > xn),

Gl = G ∩ F[xl+1, xl+2, . . . , xn] (25)

where Gl is the Gröbner basis of the l−th elimination ideal.

Theorem (The Extension Theorem)

For an ideal I = ⟨f1, f2, . . . , fs⟩ ⊆ C[x1, x2, . . . , xn] if its first elimanation ideal is I1. Then,

fi = ci (x2, . . . , xn)x
Ni
1 + terms in x1 with degree < Ni (Ni ≥ 0, ci ∈ C[x2, . . . , xn] \ {0}) (26)

If there exists a partial solution (a2, . . . , an) ∈ V(I1)
then (a2, . . . , an) /∈ V(c1, c2, . . . , cs)⇒ ∃a1 ∈ C such that (a1, a2, . . . , an) ∈ V(I ).
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Sudoku
Example

7 1 5
5 6 8

1 2 9
4

1 7 3
5

3 4 1
9 7 5

6 3 2

7 6 9 8 1 3 2 4 5
3 4 5 2 9 7 6 8 1
8 1 2 6 4 5 3 9 7
5 7 6 3 8 4 1 2 9
1 2 4 9 7 6 8 5 3
9 8 3 5 2 1 7 6 4
2 3 8 7 5 9 4 1 6
4 9 7 1 6 2 5 3 8
6 5 1 4 3 8 9 7 2

Figure 1. Sudoku puzzle and board.

square whose regions (rows, columns, and designated 2 × 2 blocks) each contain the
integers 1–4 exactly once. In this smaller universe, it is not that difficult to show that
there are 288 different Shidoku boards [17]. One of the things this paper will discuss
is the use of Gröbner bases as an alternate method of counting Sudoku and Shidoku
boards.

A Shidoku puzzle is a subset of a Shidoku board that uniquely determines the rest
of the board. For example, Figure 2 shows a Shidoku puzzle whose unique solution is
the Shidoku board in the center. The Shidoku board on the right shows the variable-
assignments we use for the cells of a Shidoku board throughout this paper.

4
4 2

3 1
1

3 2 1 4
4 1 2 3
2 3 4 1
1 4 3 2

a b c d
e f g h
i j k l
m n o p

Figure 2. Shidoku puzzle, board, and variables.

Many different Sudoku solving strategies have been developed and numerous com-
puter programs have been written using these strategies to solve, generate, and rate the
difficulty level of Sudoku puzzles. The Sudopedia website [16] is an excellent resource
for all things Sudoku, and includes dozens of strategies of various levels of sophistica-
tion. However, in this paper we are not interested in solution techniques, but rather in
the inherent structure of Shidoku and Sudoku puzzles and boards.

In what follows, we develop three different ways of representing the constraints of
Shidoku with a system of polynomial equations. In one case, we will explicitly show
how a Gröbner basis can be used to obtain a more meaningful representation of the
constraints. The Gröbner basis representation can be used to find puzzle solutions or
count numbers of boards.

Polynomial representations of Shidoku
There are various ways to represent the constraints in a Shidoku board as a system of
polynomials.

Sum-product Shidoku system We start with a simple, but nonetheless new, rep-
resentation based on the regions of the board. Think of the 16 cells on a Shidoku board

102 © THE MATHEMATICAL ASSOCIATION OF AMERICA

Figure: Sudoku Game and its solution4

4
Elizabeth Arnold, Stephen Lucas, and Laura Taalman. Gröbner basis representations of sudoku
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Sudoku I
Formulation and Modelling

The objective is to fill a m×m grid (m = n2) with integers from 1 to m such that no row or
column or block has a same number appear twice.

Any such board, can be represented in the block matrix form with its each entry being a
block of dimension n × n.

We model a sudoku using Boolean Polynomials by creating m · (m2) = m3 variables.

m boolean variables for every element of the grid.

Let these variables be denoted by xi,j where 0 ≤ i ≤ m2 − 1 and 0 ≤ j ≤ m − 1, where i
represents the element number and j represents the value that element can take
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Sudoku
Representation

There are three kinds of polynomial equations to be created to denote the following conditions,

For every i , exactly one of xi,j must be 1. This is achieved using following,

∀i ,
m−1∑
j=0

∏
k ̸=j

xi,k = 0 (for each i , xi,j = 0 for atleast m − 1 j ’s)

∀i ,
m−1∑
j=0

xi,j = 1 (for each i , not all xi,j = 0)

(27)

For i1, i2 such that they are in same row or column or block, they should not have the same
number.

m−1∑
j=0

xi1,j · xi2,j = 0 (for all valid (i1, i2) pairs) (28)

Encode the given value, if xi is k then xi,j = 1 iff j == k − 1. (i.e., other xi,j = 0)
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Sudoku
Solution

Create an ideal and add all the equations to it as polynomials and find its Gröbner basis G .

If the system has no solution then G = {1}, else the polynomials of G are in eliminated form.

If G contains m3 polynomials then there is a unique solution since each of the m3 variable
will have it’s own linear equation (as x2 = x for binary numbers) which is x = 0 or x+1 = 0.

If G contains less than m3 polynomials but more than one then x ’s can be both 0 or 1 and
x is either eliminated from the equation or it is uniquely dependent on other variables which
are eliminated at a later stage.
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Sudoku

SageMath Demo.
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https://github.com/paramrathour/Groebner-Basis-Applications/blob/main/Sudoku Solver.ipynb


Conclusion

NP-hard to compute and generated Gröbner Basis have polynomials of higher degrees and
larger coefficients.

Applications designed for Solving Polynomial Equations, Lagrange Optimizations. Check here

More possible applications Vertex Coloring, Design of Computer Algebra Systems, Coding
Theory are developed.

Future Directions on Fast Computations of Gröbner Basis: Faugère’s F4 and F5 algorithms
and more application-specific development such as, PolyBoRi, a Gröbner basis framework for
Boolean polynomials.
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https://github.com/paramrathour/Groebner-Basis-Applications
https://www-polsys.lip6.fr/~jcf/Papers/F99a.pdf
https://www-polsys.lip6.fr/~jcf/Papers/F02a.pdf
https://www.sciencedirect.com/science/article/pii/S0747717109000273
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