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Abstract

This report is divided into parts: An Introduction to Algebra and Geometry followed by An
Introduction to Gröbner Bases then Applications of Gröbner Bases. We start with an introduction
to algebraic concepts, focussing over polynomials, ideals and their algorithms. Then we study
geometric concepts such as varieties and their relationship with ideals which is probed with
interesting problem. One such problem of “Ideal Membership” is broken down into simpler cases
and the development of Gröbner Bases Theory and Computation is motivated using it. Then, we
focus on select applications of Gröbner Bases from countless many available in literature and also
discuss SageMath implementations for some of them. I have tried to make this report interesting
and also covered fundamentals. Still, this is just a glimpse of an extensive topic like Gröbner Bases.
Finally, I encourage you to look at all the SageMath programs and their diverse and exciting
applications here.
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Part I

Algebra and Geometry: Introduction

1 Polynomials: Introduction

Let us start by defining notions of arithmetic. Loosely speaking, these notions are used to define some
kind of operations over numbers. The benefit of such analysis is that results which do not assume
properties other than above can be generalized to any other arithmetic of the same kind (i.e. a field
or a commutative ring).

Definition 1.1 (Field). A set, with binary operations (+, ·) (defined over all its elements) which
satisfies the below properties is called a Field, usually denoted by F.

• x+ y ∈ F, ∀x, y ∈ F (closure under addition)

• x+ y = y + x,∀x, y ∈ F (commutativity under addition)

• x+ (y + z) = (x+ y) + z, ∀x, y, z ∈ F (associativity under addition)

• ∃!0 ∈ F : x+ 0 = x, ∀x ∈ F (existence of unique additive identity)

• ∀x ∈ F,∃!y ∈ F : x+ y = 0 (existence of unique additive inverse)

• x · y ∈ F,∀x, y ∈ F (closure under multiplication)

• x · y = y · x,∀x, y ∈ F (commutativity under multiplication)

• x · (y · z) = (x · y) · z,∀x, y, z ∈ F (associativity under multiplication)

• ∃!1 ∈ F : x · 1 = x,∀x ∈ F (existence of unique multiplicative identity)

• ∀x ∈ F \ {0}, ∃!y ∈ F : x · y = 1 (existence of unique multiplicative inverse)

• x · (y + z) = x · y + x · z, ∀x, y, z ∈ F (distributivity of multiplication over addition)

Note. We also assume that the additive identity is different from multiplicative identity (i.e. 0 ̸= 1)
so as to exclude fields with one element.

Definition 1.2 (Commutative Ring). A set, with binary operations (+, ·) (as above) which satisfies
all the properties of fields except existence of multiplicative inverse is called a commutative ring.

Note, the operations are as necessary as the set while mentioning the field (or a commutative ring),
but we may skip operations if they are understood without ambiguity. In such cases (like below), we
may abuse the notation and refer to the set of the field as field itself.

The set of a field can have finite or infinite elements. = An example of a set which is not a field is Z,
as a multiplicative inverse does not exist for all its elements. But, it is a commutative ring. Another
example of commutative ring, that the reader might be familiar with is “polynomials”, which will be
the focus of this report.

Definition 1.3 (Monomial). A monomial, denoted by xα is defined as follows

xα = xα1
1 · x

α2
2 · · ·x

αn
n (αi ∈ Z+ and α = (α1, α2, . . . , αn)) (1.1)

Note, when α = (0, 0, . . . , 0) we take xα = 1.

The collection of all such α over (x1, x2, . . . , xn) is denoted by Zn
≥0.
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Definition 1.4 (Total degree of a monomial). The total degree, denoted by |α| is defined as

|α| = α1 + α2 + · · ·+ αn (1.2)

Definition 1.5 (Polynomial). A polynomial f in (x1, x2, . . . , xn) is a finite sum denoted by

f(x1, x2, . . . , xn) = f(x) = f =
∑
α

aαx
α (where aα ∈ F and α = (α1, α2, . . . , αn)) (1.3)

Here, aα is the coefficient of xα and aαx
α is called a term of f provided aα ̸= 0.

An example of a polynomial is given below with its representation using monomials and its coeffi-
cients

f = 4xy2z + 4z2 − 5x3 + 7x2z2 ∈ Q[x, y, z]

f = sum{(4, (1, 2, 1)), (4, (0, 0, 2)), (−5, (3, 0, 0)), (7, (2, 0, 2))}
(1.4)

Definition 1.6 (Total degree of a polynomial). The total degree of a polynomial, denoted by
deg(f) is the maximum total degree of a monomial of f which has non-zero coefficient, i.e.

deg(f) = max
α ̸=0
|α| (1.5)

The collection of all polynomials in (x1, x2, . . . , xn) with coefficients in F forms a commutative ring
(more specifically a polynomial ring) which is denoted by F[x1, x2, . . . , xn].

Note, if n = 1 then we get F[x] which are polynomials in one variable (x) (univariate polynomials).
In this report, we will see how our understanding of F[x] can be used to get generalised notions of
polynomials over multiple variables (multivariate polynomials).

Definition 1.7 (Algebraically Closed Field). If for every polynomial f ∈ F[x] of positive degree
there exists a x ∈ F such that f(x) = 0 (x is a root) then F is an algebraically closed field.

The Fundamental Theorem of Algebra states that C is an algebraically closed field.

1.1 Monomial Order

From 1.4, one might ask about relative ordering between the elements. An ordering might be crucial
in representing polynomials and their arithmetic.

Definition 1.8 (Monomial Ordering). A monomial ordering is a relation > on monomials
xα, α ∈ Zn

≥0 which satisfies the below properties.

• > is a total order, i.e., for β ∈ Zn
≥0 exactly one of the following happens

xα > xβ or xα < xβ(≡ xβ > xα) or xα = xβ(≡ xα ≯ xβ, xβ ≯ xα) (1.6)

• α > β, γ ∈ Zn
≥0 ⇒ α+ γ > β + γ

• > is a well-ordering, i.e.,

for non-empty A ⊆ Zn
≥0 ⇒ ∃!α such that β ≥ α for β ∈ Zn

≥0 (1.7)

or equivalently, every strictly decreasing sequence {α(i)} eventually terminates.
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Definition 1.9 (Lexicographic Order). For α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈ Zn
≥0,

α >lex β if leftmost non-zero entry of α− β is positive.
f of 1.4 with respect to lex order is as follows,

f = −5x3 + 7x2z2 + 4xy2z + 4z2 ∈ Q[x, y, z]

f = sum{(−5, (3, 0, 0)), (7, (2, 0, 2), (4, (1, 2, 1)), (4, (0, 0, 2)))}
(1.8)

Definition 1.10 (Graded Lex Order). For α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈ Zn
≥0,

α >grlex β if |α| > |β| or (|α| = |β| and α >lex β)
f of 1.4 with respect to grlex order is as follows,

f = 7x2z2 + 4xy2z − 5x3 + 4z2 ∈ Q[x, y, z]

f = sum{(7, (2, 0, 2), (4, (1, 2, 1)), (−5, (3, 0, 0)), (4, (0, 0, 2)))}
(1.9)

Definition 1.11 (Graded Reverse Lex Order). For α = (α1, α2, . . . , αn) and β = (β1, β2, . . . , βn) ∈
Zn
≥0, α >grevlex β if |α| > |β| or (|α| = |β| and rightmost non-zero entry of α− β is negative)

f of 1.4 with respect to grlex order is as follows,

f = 4xy2z + 7x2z2 − 5x3 + 4z2 ∈ Q[x, y, z]

f = sum{(4, (1, 2, 1)), (7, (2, 0, 2), (−5, (3, 0, 0)), (4, (0, 0, 2)))}
(1.10)

Note. In Graded Lex Order, the intuition is higher total degree first and then leftmost non-zero entry
α− β is positive. So, higher preference to higher powers of a xi.
In Graded Reverse Lex Order, the intuition is higher total degree first and then rightmost non-zero
entry α− β is negative. So, lower preference to lower powers of a xi, which equivalently means higher
preference to higher sum of powers of xj , j < i

Proposition 1.12. The lex, grlex and grevlex ordering on Zn
≥0 are monomial orderings.

Proof. We verify the properties of a monomial ordering for lex ordering.

• Total order is trivial.

• α >lex β ⇒ leftmost non-zero entry in α− β is positive. α− β = (α+ γ)− (β + γ)⇒ leftmost
non-zero entry in (α+ γ)− (β + γ) is positive. This implies α+ γ >lex β + γ.

• To show that >lex is a well-ordering, the idea is that the sequence α(i) is strictly decreasing.
Say αi = (αi1 , αi2 , . . . , αin). The leftmost element αi1 will keep decreasing with i but it can’t
decreasing forever since it is non-negative, so eventually it stabilizes. As αi1 are equal now, to
continue the sequence, an element to the right of αi1 will be compared and same reasoning
applies here. In this way, eventually the sequence will terminate.

The grlex and grevlex orderings can be shown to be monomial order using similar arguments. ■

Definition 1.13 (Monomial Ordering-Specific Terminology). For a non-zero f =
∑

α aαx
α,

and a monomial order >

multidegree of f
multideg(f) = max

w.r.t. >
(α ∈ Zn

≥0|aα ̸= 0) (1.11)

leading coefficient of f
LC(f) = amultideg(f) ∈ F (1.12)
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leading monomial of f
LM(f) = xmultideg(f) (1.13)

leading term of f
LT(f) = LC(f) · LM(f) (1.14)

For f of 1.4 with respect to grlex order,

multideg(f) = (2, 0, 2), LC(f) = 7, LM(f) = x2z2, LT(f) = 7x2z2 (1.15)

2 Affine Varieties

Definition 2.1 (Affine Space). An n−dimensional affine space over F is a set denoted by Fn and
defined as follows

Fn = {(a1, a2, . . . , an) | ai ∈ F} (2.1)

Now, a polynomial f can be defined as a function f : Fn → F, where each xi gets replaced by ai.
Since a function usually has a geometric interpretation, this is the beginning of the link between
algebra and geometry.

Definition 2.2 (Affine Varieties). An affine variety V (over polynomials f1, f2, . . . , fs) is defined
as follows

V = V(f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ Fn | fi(a1, a2, . . . , an) = fi(a) = 0 ∀i} (2.2)

Intuitively, this is a set of solutions of polynomial equations f1(x) = f2(x) = · · · = fs(x) = 0. A
geometric interpretation is that the solution set is an intersection of curves represented by these
functions. It turns out many important problems turns into finding such solution set (see ??). Hence,
it will be great to be able to solve such a system algebraically where a computer is proficient.

We know for univariate polynomials its coefficients are zero iff it evaluates to zero at all points. This
is due to a fact that a polynomial ∈ F[x] of degree n can have at most n roots which can be proved
via induction arguments.
It turns out the same does not hold for multivariate polynomials in general. Consider, a polynomial
over GF(2), f(x) = x2 + x. It has non-zero coefficients but f(0) = f(1) = 0.

Lemma 2.3 (Zero Polynomial on infinite fields). The following is true if F is an infinite field.

f(a1, a2, . . . , an) = 0,∀a ∈ Fn ⇔ aα = 0, ∀aα ∈ {coefficients of f} ∈ Fn (2.3)

This implies, having all coefficients zero (zero polynomial) is equivalent to evaluating zero at all points
(zero function).

Proof. Clearly, RHS ⇒ LHS.
We can show LHS ⇒ RHS using induction over total degree, they key idea in the inductive step is to
rewrite the polynomial as a single variable and coefficients as multivariate polynomials. Then use
the equivalence for univariate polynomials over infinite fields to get that the coefficients which are
multivariate polynomials of lesser total degree. So they must be zero by inductive hypothesis. ■

Lemma 2.4. V1, V2 ⊆ Fn are affine varieties⇒ V1∩V2 and V1∪V2 are also affine varieties. Moreover,

V1 = V(f1, f2, . . . , fs1)

V2 = V(g1, g2, . . . , gs2)
⇒

V1 ∩ V2 = V(f1, f2, . . . , fs1 , g1, g2, . . . , gs2)

V1 ∪ V2 = V(fi · gj | ∀i, j)
(2.4)
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Proof. We show both one-by-one

• a = (a1, a2, . . . , an) ∈ V1 and a ∈ V2 is equivalent to a ∈ V1 ∩ V2, as varieties are set so their
intersection is also a set. Also, both the statement means fi(a) = 0 = gj(a) ∀i, j. Hence, the
result.

• a = (a1, a2, . . . , an) ∈ V1 or a ∈ V2 is equivalent to a ∈ V1 ∪V2, as varieties are set so their union
is also a set. a ∈ V1 implies fi(a) = 0 ∀i which implies fi(a) · gj(a) = 0 ∀i, j, which implies
a ∈ V(fi · gj | ∀i, j). Similarly, a ∈ V2 ⇒ a ∈ V(fi · gj | ∀i, j). Hence V1 ∪ V2 ⊆ V(fi · gj | ∀i, j).

Now, to prove V(fi · gj | ∀i, j) ⊆ V1 ∪ V2, we need to show a ∈ V(fi · gj | ∀i, j)⇒ a ∈ V1 ∪ V2.
We will prove its contrapositive, i.e., a /∈ V1, a /∈ V2 ⇒ a /∈ V(fi · gj | ∀i, j).
a /∈ V1, a /∈ V2 implies ∃fi, gj such that fi(a) ̸= 0 ̸= gj(a) which implies a /∈ V(fi · gj | ∀i, j).

■

Let us take an example, to gain more familiarity with varieties. Consider, multivariate polynomials

with total degree = 1 (i.e., linear polynomials). Say, fi(x) = αi0 +
n∑

j=1

αij · xj where, αij ∈ F.

Now, this can be converted to a linear algebra problem of solving system of linear equations Ax = b
where, (i, j)th entry of A is given by [Ai,j ] = αij and (i)th entry of b is given by [bi] = −αi0 with
appropriately selected indices i and j.

After this, we can convert the augmented matrix ([A : b]) into row-reduced echelon form (rref) by
Gaussian elimination. Once we get rref, determining the existence of solutions, their cardinality and
“dimension” is a simple task. The question we ask now is if given any affine variety can we determine
something similar about it. More precisely, the questions of interests concerning an affine variety
V = V(f1, f2, . . . , fs) are

Consistency Is there a way to determine if V is non-empty. Then, we will know if the system
fi(x) = 0 is consistent.

Finiteness Is there a way to determine if V is finite. Then, the next problem is about whether we
can find all such solutions.

Dimension Is there a way to determine the “dimension” of V .

Surprisingly, if we choose the underlying field carefully we can get the answer to every question stated
above provided we define the notions appropriately. In fact the process, is quite similar to converting
a system to rref by elimination as we will see in 1 and 1.

§2 Affine Varieties 9

examples. To illustrate this, consider the variety V(xz, yz). One can easily check that
the equations xz = yz = 0 define the union of the (x, y)-plane and the z-axis:

x

y

z

Hence, this variety consists of two pieces which have different dimensions, and one
of the pieces (the plane) has the “wrong” dimension according to the above intuition.

We next give some examples of varieties in higher dimensions. A familiar case
comes from linear algebra. Namely, fix a field k, and consider a system of m linear
equations in n unknowns x1, . . . , xn with coefficients in k:

(1)

a11x1 + · · ·+ a1nxn = b1,
...

am1x1 + · · ·+ amnxn = bm.

The solutions of these equations form an affine variety in kn, which we will call a
linear variety. Thus, lines and planes are linear varieties, and there are examples
of arbitrarily large dimension. In linear algebra, you learned the method of row re-
duction (also called Gaussian elimination), which gives an algorithm for finding all
solutions of such a system of equations. In Chapter 2, we will study a generalization
of this algorithm which applies to systems of polynomial equations.

Linear varieties relate nicely to our discussion of dimension. Namely, if V ⊆ kn is
the linear variety defined by (1), then V need not have dimension n−m even though
V is defined by m equations. In fact, when V is nonempty, linear algebra tells us that
V has dimension n− r, where r is the rank of the matrix (aij). So for linear varieties,
the dimension is determined by the number of independent equations. This intuition
applies to more general affine varieties, except that the notion of “independent” is
more subtle.

Some complicated examples in higher dimensions come from calculus. Sup-
pose, for example, that we wanted to find the minimum and maximum values of
f (x, y, z) = x3 + 2xyz − z2 subject to the constraint g(x, y, z) = x2 + y2 + z2 = 1.
The method of Lagrange multipliers states that ∇f = λ∇g at a local mini-

Figure 2.1: V(xz, yz) - a union of a line and a plane. From [9]
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Note. The “dimension” of a variety is not exactly the same as the dimension of vector space. See 2.1,
V(xz, yz) = V(z) ∪V(xy) as xz = yz = 0 implies z = 0 (x− y plane) or x = y = 0 (z−axis). The
variety is a union of line and a plane, two different dimensional objects from linear algebra. Hence,
the term needs to be defined appropriately first for an affine variety.

3 Ideals

Definition 3.1 (Ideal). A subset I ⊆ F[x1, x2, . . . , xn] which satisfies the below properties is called
an Ideal.

• 0 ∈ I

• f(x), g(x) ∈ I ⇒ f(x) + g(x) ∈ I, ∀x ∈ Fn

• f(x) ∈ I ⇒ h(x)f(x) ∈ I, ∀h(x) ∈ F[x1, x2, . . . , xn] and ∀x ∈ Fn

As I is subset, its operations are same as defined over F[x1, x2, . . . , xn].

Lemma 3.2. For f1, f2, . . . , fs ∈ F[x1, x2, . . . , xn], ⟨f1, f2, . . . , fs⟩ is the ideal generated by f1, f2, . . . , fs.
Also, f1, f2, . . . , fs is a generating set of ⟨f1, f2, . . . , fs⟩.

I = ⟨f1, f2, . . . , fs⟩ =

{
s∑

i=1

hi · fi|hi ∈ F[x1, x2, . . . , xn]

}
(3.1)

It is trivial to show that ⟨f1, f2, . . . , fs⟩ is indeed an ideal, use the representation 3.1 and verify the
three properties.

Notice, how the definition of an ideal seems similar to a vector space, and 3.1 looks similar to a linear
combination. While multiplying, all polynomials are considered as “scalars” of the system.

Definition 3.3 (Finitely Generated Ideal). An ideal I is finitely generated if

∃f1, f2, . . . , fs ∈ F[x1, x2, . . . , xn] such that I = ⟨f1, f2, . . . , fs⟩ (3.2)

Definition 3.4 (Principle Ideal). An ideal I generated by single element is a principle ideal.

Definition 3.5 (Principle Ideal Domain (PID)). If every ideal in a domain is a principle ideal
then the domain is called principle ideal domain.

Definition 3.6 (Ideal of an affine variety). The set I(V ) is the ideal of an affine variety.

I(V ) = {f ∈ F[x1, x2, . . . , xn] | f(a1, a2, . . . , an) = 0, ∀a ∈ V } (3.3)

It is trivial to show that I(V ) is indeed an ideal, as for any a ∈ V :

• 0 ∈ I(V ) as 0(a) = 0, ∀a ∈ V

• f, g ∈ I(V )⇒ f(a) = g(a) = 0⇒ f(a) + g(a) = 0⇒ f + g ∈ I(V )

• f ∈ I(V )⇒ f(a) = 0⇒ h(a)f(a) = 0⇒ hf ∈ I(V )

Lemma 3.7. For f1, f2, . . . , fs ∈ F[x1, x2, . . . , xn], ⟨f1, f2, . . . , fs⟩ ⊆ I(V (f1, f2, . . . , fs))

Proof. Take f ∈ ⟨f1, f2, . . . , fs⟩ ⇒ ∃hi ∈ F[x1, x2, . . . , xn] such that f =
∑s

i=1 hi · fi
Now, consider a ∈ V(f1, f2, . . . , fs)⇒ fi(a) = 0⇒ f(a) = 0⇒ f ∈ I(V ). ■

6



Note. The above containment need can be strict.
Consider f = x2, I = ⟨f⟩ = h · f , ∀h ∈ F[x]⇒ I contains polynomials of total degree ≥ 2.
But V (f) = V (x2)⇒ V = {0} ⇒ g = x ∈ I(V )⇒ I(V ) contains polynomials of total degree 1.

Similar to affine varieties, we can ask some interesting questions about ideals

Ideal Description Does every ideal I ⊆ F[x1, x2, . . . , xn] has a finite generating set.

Ideal Membership If I = ⟨f1, f2, . . . , fs⟩, is there a way to determine if f ∈ I .

Nullstellensatz Is there an exact relation between ⟨f1, f2, . . . , fs⟩ and I(V (f1, f2, . . . , fs))

Again, surprisingly, we can answer all these questions. See 2.

4 Polynomials: Algorithms

Proposition 4.1 (Divison Algorithm (Univariate Polynomials)). For every f ∈ F[x] and
non-zero g ∈ F[x], ∃!q, r ∈ F[x] such that f = qg + r, where either r = 0 or deg(r) < deg(g).

Proof. Proof by construction, we “divide” f by g to get q, r.
One thing to note is that, for non-zero f, g

LT(f) divides LT(g)⇔ deg(f) ≤ deg(g) (4.1)

Algorithm 1 Polynomial Division (Single Variable)

Input: f, g where f, g ∈ F[x], g! = 0
Output: q, r
q ← 0
r ← f
while r ̸= 0 and LT(g)|LT(r) (a|b is a divides b) do

q ← q +
LT(r)

LT(g)

r ← r − LT(r)

LT(g)
g

end while
return q, r

Note that, f = qg + r always holds. It holds iniatilly and then,

f = qg + r ⇔ f =

(
q +

LT(r)

LT(g)

)
g +

(
r − LT(r)

LT(g)
g

)
(4.2)

The algorithm terminates because, deg(r) drops at each iteration or r becomes 0.
Uniqueness follows from contradiction argument. ■

Note. If r = 0 we say that g divides f

Theorem 4.2 (Divison Algorithm (Multivariate Polynomials)). For any f ∈ F[x1, x2, . . . , xn],
F = (f1, f2, . . . , fs) where fi ∈ F[x1, x2, . . . , xn] on a monomial order,

∃qi, r ∈ F[x1, x2, . . . , xn] where either r = 0 or r =
∑
α

aα · xα,LT fi ∤ xα,∀i, α.

Moreover, qi · fi ̸= 0⇒ multideg(f) ≥ multideg(qi · fi)
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Proof. Proof by construction, we divide f by fi to get qi, until we can’t divide further (Division Step),
then the leading terms move to remainder until one of them divides fi+1 (Remainder Step). Now,
divide by fi+1 and repeat the steps till the end.

Algorithm 2 Polynomial Division (Multiple Variable)

Input: F = (f1, f2, . . . , fs) and f where f, fi ∈ F[x1, x2, . . . , xn]
Output: q1, q2, . . . , qs, r

qi ← 0, ∀i
r ← 0
p← f
while p ̸= 0 do

i← 1
division← false
while i ≤ s and division = false do

if LT(fi)|LT(p) then

qi ← qi +
LT(p)

LT(fi)

p← p− LT(p)

LT(fi)
fi

division← true
else

i← i+ 1
end if

end while
if division = false then

r ← r − LT(p)
p← p− LT(p)

end if
end while
return q1, q2, . . . , qs, r

Proof is similar to 4 but lengthier. Here, f =
∑
i

qi · fi + p+ r always holds. It holds initially and

then during division step,

qi · fi + p⇔
(
qi +

LT(p)

LT(fi)

)
fi +

(
p− LT(p)

LT(fi)
fi

)
(4.3)

and during the remainder step,

p+ r ⇔ (p− LT(p)) + (r + LT(p)) (4.4)

■

Note. In 2, the remainder and quotients are not uniquely determined, they may change with permu-
tation of F . Applying the division algorithm on f = xy2 − x over F = (f1, f2) = (y2 − 1, xy2 − x)
gives (q1, q2, r) = (x, 0, 0)⇒ f ∈ ⟨f1, f2⟩ whereas, over F = (f2, f1) gives (q1, q2, r) = (y, 0,−x+ y).
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Part II

Gröbner Bases: Introduction

1 Motivation: The Ideal Membership Problem

Recall the Ideal Membership Problem. If I = ⟨f1, f2, . . . , fs⟩, is there a way to determine if f ∈ I?
We first look at the univariate case,

Proposition 1.1. For every ideal I ⊆ F[x], ∃!f ∈ F[x] such that I = ⟨f⟩. Also, this f either is zero
polynomial (iff I = {0}) or it is monic (i.e.,LC(f) = 1).
This means that every ideal in F[x] is a principle ideal and F[x] is a principle ideal domain.

Proof. We consider the cases,

• I = {0} ⇒ I = ⟨0⟩ ⇒ f = 0 and ⟨f⟩ = ⟨0⟩ = {0}.

• I ⊃ {0}, we claim the monic polynomial of minimum degree in the ideal is such an f .

– f ∈ I ⇒ ⟨f⟩ ⊆ I, since I is an ideal.

– For any g ∈ I, we can divide it by f using 4 to get g = qf + r. As g, f ∈ I ⇒ r ∈ I. Now, r
is either 0 or deg(r) < deg(f). Since the latter is not possible, r = 0 which implies g ∈ ⟨f⟩.
Hence I ⊆ ⟨f⟩.

For uniqueness, ⟨f⟩ = ⟨f̃⟩ ⇒ f = cf̃ , where c ∈ F \ {0} ⇒ c = 1 (as both f, f̃ are monic). ■

This essentially solves the Ideal Membership Problem for ideals ∈ F[x].
A way to compute that f is by calculating the GCD of its generating set.

Definition 1.2 (Greatest Common Divisor (GCD)). g ∈ F[x] is a greatest common divisor of
f1, f2, . . . , fs ∈ F[x] if it satisfies the below properties,

• g divides f1, f2, . . . , fs.

• p divides f1, f2, . . . , fs ⇒ p divides g

g if exists is unique up to a multiplication by c ∈ F \ {0}. As any gcd g, g̃ divides each other. We
denote this gcd by gcd(f1, f2, . . . , fs).

Proposition 1.3.
I = ⟨gcd(f1, f2, . . . , fs)⟩ = ⟨f1, f2, . . . , fs⟩ (1.1)

Proof. By 1.1, ∃f ∈ ⟨f1, f2, . . . , fs⟩ such that ⟨f⟩ = ⟨f1, f2, . . . , fs⟩. Now, f = gcd(f1, f2, . . . , fs).

• Any f divides fi as fi ∈ ⟨f⟩ ⇒ fi = hi · f .

• Any p divides fi ⇒ fi = Ai · p⇒ f =
∑

iBi · fi =

(∑
i

Ai ·Bi·

)
p⇒ f divides p.

■

This GCD can be computed by applying Euclid’s Algorithm successively to pairs of f1, f2, . . . , fs.
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Proposition 1.4 (Euclid’s Algorithm). Euclid’s Algorithm is used to compute gcd(f1, f2) where
f1, f2 ∈ F[x], f2 ̸= 0.

Algorithm 3 Euclid’s Algorithm

Input: f1, f2 where f1, f2 ∈ F[x], f2 ̸= 0
Output: g = gcd(f, g)

g ← f1
h← f2
while h ̸= 0 do

g, h← h, r where r is the remainder of g when divided by h (g = qh+ r)
end while
return g

The algorithm terminates because, deg(r) drops at each iteration or r becomes 0.

Theorem 1.5 (Ideal Membership Problem (Univariate Polynomial Ideals)). For an ideal
I = ⟨f1, f2, . . . , fs⟩ ⊆ F[x], and f, fi ∈ F[x],

f ∈ I ⇔ gcd(f1, f2, . . . , fs) divides f. (1.2)

Proof. Trivial from 1.3. ■

Now, we move to ideals in domain of multivariate polynomials.

As seen at the end of 2, for a arbitrary generating set. The remainder when f is divided by
F = (f1, f2, . . . , fs) need not be zero for all orderings of F . In worst case, we may need to check all
permutations of F until we get zero remainder. This can be shown to be worse than exponential
complexity. Hence, for a generating set, it is desirable that the remainder is 0 when divided by all
possible orderings of F iff F divides f . In fact, such a generating set does exist for each ideal in
F[x1, x2, . . . , xn]. This set is the Gröbner Basis of the ideal.

Before we jump onto it, let us understand Monomial Ideals.

1.1 Monomial Ideals

Definition 1.6 (Monomial Ideals). An ideal I ⊆ F[x1, x2, . . . , xn] is a monomial ideal if ∃A ⊆ Zn
≥0

such that
I = ⟨xα|α ∈ A⟩ (1.3)

Intuitively, the ideal is generated by a set of monomials (possibly infinite).

Lemma 1.7. Given a monomial ideal I and a f ∈ F[x1, x2, . . . , xn], f ∈ I iff every term of f lies in I.

Proof. The if direction is trivial since any f is a linear combination of monomials.
For the only if direction, consider the contrapositive, i.e., ∃aα̃ · xα̃ /∈ I ⇒ f /∈ I.
aα̃ · xα̃ /∈ I ⇒ ∀α ∈ A, xα doesn’t divide xα̃. Hence, when we divide f by the monomials of I, the
remainder will always contain xα̃ or its multiple ⇒ f /∈ I. ■

Theorem 1.8 (Dickson’s Lemma). Every monomial ideal I = ⟨xα|α ∈ A⟩ has a finite basis1, i.e.,
∃α(1), α(2), . . . , α(s) ∈ A such that I = ⟨xα(1), xα(2), . . . , xα(s)⟩.

1we also call a generating set a basis. This is unlike the definitions from vector spaces.
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Proof. The idea is to use induction on the number of variables. Base case (n = 1) follows from 1.1. In
inductive case, consider monomials in F[x1, x2, . . . , xn−1, y]. They can be written as xαym, α ∈ Zn−1

≥0 .
Now, take J as the ideal in F[x1, x2, . . . , xn−1] generated by xα where xαym ∈ I. Use the inductive
hypothesis to represent this J with a finite generating set such that J = ⟨xα(1), xα(2), . . . , xα(s)⟩. Now
create, m ideals Jl ∈ F[x1, x2, . . . , xn−1] where 0 ≤ l ≤ m− 1 such that it is generated by monomials
xβyl ∈ I. Again, by inductive hypothesis, Jl has finite generating set. Now, J ∪

⋃m−1
l=0 Jl is a finite

generating set of given monomial ideal. ■

Definition 1.9 (Minimal Basis). A monomial ideal I = ⟨xα(1), xα(2), . . . , xα(s)⟩ has a minimal basis
if ∀i, j (i ̸= j), xα(i) doesn’t divide xα(j). Also, this basis is unique.

Proof. Repeatedly remove the monomials which have divisors until it not possible. Uniqueness follows
from contradiction arguments as monomials from two minimal basis will divide each other. ■

Theorem 1.10 (Ideal Membership Problem (Monomial Ideals)). For a monomial ideal

I = ⟨xα(1), xα(2), . . . , xα(s)⟩ and a f ∈ F[x1, x2, . . . , xn] such that f =
∑
α

aα · xα,

f ∈ I ⇔ ∀α∃i such that xα(i) divides xα. (1.4)

Proof. Application of 1.7 and 1.8. ■

2 Gröbner Bases

Definition 2.1. For a non-zero ideal I ⊆ F[x1, x2, . . . , xn]\ and a monomial ordering on F[x1, x2, . . . , xn],
we denote the set of leading terms of non-zero elements of I as

LT(I) = {aαxα|∃f ∈ I \ {0} such that LT(f) = aαx
α} (2.1)

The motivation for this definition is then, ⟨LT(I)⟩ is a monomial ideal. So by 1.8, it has a finite basis.

Theorem 2.2 (Hilbert Basis Theorem). Every ideal I ⊆ F[x1, x2, . . . , xn] has a finite basis.

Note, the Hilbert Basis Theorem solves the Ideal Description problem.

Proof. For I = {0}, we have I = ⟨0⟩. For other I, by 1.8 ∃g1, g2, . . . , gt ∈ I such that ⟨LT(I)⟩ =
⟨LT(g1),LT(g2), . . . ,LT(gt)⟩. Now, we can show that I = ⟨g1, g2, . . . , gt⟩, by dividing f ∈ with
G = (g1, g2, . . . , gt) and proving that the remainder is zero. ■

Theorem 2.3 (Ascending Chain Condition). Ii ∈ F[x1, x2, . . . , xn],∀i ∈ Z+ such that Ii ⊆
Ii+1 ⇒ ∃N ∈ Z+ such that IN = IN+1. Intuitively, it states that the sequence of ideals where previous
ideals are contained within current ideal stabilizes.

Proof. Consider I =
⋃∞

i=1 Ii, clearly, I is an ideal. Now, by 2.2, it has a finite generating set where
each of its generator fi is contained in some Iji . This implies due to ascending chain, all generators
are contained in IN where N = maxi ji ⇒ generators of Ik where k ≥ N are same. So, IN = IN+1 ■

Definition 2.4 (Affine Variety of an Ideal). For an ideal I ⊆ F[x1, x2, . . . , xn] such that I =
⟨f1, f2, . . . , fs⟩, the affine variety of an Ideal is defined as below,

V(I) = V(f1, f2, . . . , fs) = {(a1, a2, . . . , an) ∈ Fn | f(a1, a2, . . . , an) = f(a) = 0 ∀f ∈ I} (2.2)
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Definition 2.5 (Gröbner Basis). For a fixed monomial ordering on F[x1, x2, . . . , xn] and
G = {g1, g2, . . . , gt}, G is called a Gröbner basis of a non-zero ideal I ⊆ F[x1, x2, . . . , xn] if

⟨LT(I)⟩ = ⟨LT(g1),LT(g2), . . . ,LT(gt)⟩ (2.3)

The Gröbner basis of I = {0} is defined as ∅.

Proposition 2.6 (Property of Gröbner Bases). For a Gröbner basis G = {g1, g2, . . . , gt} for an
ideal I ⊆ F[x1, x2, . . . , xn] and a given f ∈ F[x1, x2, . . . , xn], ∃!r ∈ F[x1, x2, . . . , xn] such that no term
of r is divisible by LT(gi) for any i.

The uniqueness of remainder is the reason the ordered tuple we divide with is a set.

Note. Only remainder is guarenteed to be unique, the quotients need not be unique.

Theorem 2.7 (Ideal Membership Problem (Multivariate Polynomial Ideals)). For a Gröbner
basis G = {g1, g2, . . . , gt} for an ideal I ⊆ F[x1, x2, . . . , xn],

f ∈ I ⇔ remainder on division of f by G is zero. (2.4)

2.1 Computation of Gröbner Basis

Definition 2.8. Here are some additional notations that will be helpful.

• f
F
is the remainder on division of f by F = (f1, f2, . . . , fs).

• xγ = lcm(LM(f),LM(g)), i.e., it is the least common multiple of LM(f),LM(g)
with γi = max(αi, βi) where multideg(f) = α,multideg(g) = β.

• S(f, g) =

(
xγ

LT(f)
· f − xγ

LT(g)
· g
)

is the S-polynomial of f, g.

Theorem 2.9 (Buchberger’s Criterion). A basis G = {g1, g2, . . . , gt} is a Gröbner basis of

I ⊆ F[x1, x2, . . . , xn] iff S(gi, gj)
G
= 0,∀i, j (i ̸= j)

Theorem 2.10 (Buchberger’s Algorithm). For a non-zero ideal I = ⟨f1, f2, . . . , fs⟩, Gröbner
basis for I is constructed as follows:
Given a basis, we can extend the basis to a Gröbner basis by repeatedly adding the non-zero remainders
of S-polynomials between pairs of basis to the basis until 2.9 is satisfied.

Algorithm 4 Buchberger’s Algorithm

Input: F = (f1, f2, . . . , fs) where fi’s are non-zero
Output: G = (g1, g2, . . . , gt) where G is a Gröbner Basis for I
G← F
repeat

G′ ← G
for all pairs {p, q} where p, q ∈ G′, p ̸= q do

r ← S(p, q)
G′

if r ̸= 0 then
G← G ∪ {r}

end if
end for

until G = G′

return G
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Proof. In the beginning, G ∈ I, let each iterate of G be called G(i). Now, if G(i) ∈ Ithen whenever a

remainder r = S(gi, gj)
Gi

is added to G(i) then G(i+1) ∈ I as r ∈ I. As F ⊆ Gand⟨F ⟩ = I ⇒ ⟨G⟩ = I.
So, the algorithm if terminates gives a Gröbner basis.
Now, due to addition of r, ⟨LT(G(i))⟩ ⊆ ⟨LT(G(i+1))⟩, so this sequence forms an ascending chain and
thus, by 2.3 it converges. Hence, the algorithm terminates. ■

Definition 2.11 (Reduced Gröbner Basis). A reduced Gröbner basis G = {g1, g2, . . . , gt} of an
ideal I ⊆ F[x1, x2, . . . , xn] is such that ∀i,LC(gi) = 1 and no monomial of gi belongs to ⟨LT(G\{gi})⟩.
Also, a reduced Gröbner basis is unique for an ideal subject to monomial ordering.

Such, a Gröbner basis can be constructed by repeatedly removing gi where LT(gi) ∈ ⟨LT(G \ {gi}).
These new sets are also a Gröbner basis.

Note, the process of computing Gröbner basis is very expensive but once computed, we can solve
plethora of applications as we will see in next parts.
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Part III

Algebra and Geometry: Interconnection

1 Nullstellensatz

The following results are taken from [9].

Theorem 1.1 (The Weak Nullstellensatz). For an algebraically closed field F and if I ⊆
F[x1, x2, . . . , xn] is an ideal satisfying V(I) = ∅ then I = F[x1, x2, . . . , xn] Intuitively, this means that
every system of polynomials than generates an ideal strictly smaller than F[x1, x2, . . . , xn] has a zero
in Cn.

This theorem allows us to solve the consistency problem,

Corollary 1.2 (Consistency Problem). V = V(f1, f2, . . . , fs) = ∅⇔ the reduced Gröbner basis
of I = ⟨f1, f2, . . . , fs⟩ is {1}

Theorem 1.3 (Hilbert’s Nullstellensatz). For an algebraically closed field F and if f, fi ∈
F[x1, x2, . . . , xn] then

f ∈ I(V(f1, f2, . . . , fs))⇔ ∃m ≥ 1 such that fm ∈ ⟨f1, f2, . . . , fs⟩ (1.1)

Definition 1.4 (Radical Ideal). For a radical ideal I, fm ∈ I for some m ≥ 1⇒ f ∈ I.

Definition 1.5 (Radical of Ideal). The radical of an ideal I ∈ F[x1, x2, . . . , xn] is denoted by
√
I

which is defined as
I ⊆
√
I = {f |fm ∈ I for some m ≥ 1} (1.2)

Also,
√
I is a radical ideal.

Theorem 1.6 (The Strong Nullstellensatz). For an algebraically closed field F and if I ⊆
F[x1, x2, . . . , xn] is an ideal then

I(V(I)) =
√
I (1.3)

Theorem 1.7 (The Ideal–Variety Correspondence). For an arbitrary field, I,V are inclusion
reversing, i.e.,

I1 ⊆ I2 ⇒ V(I1) ⊇ V(I2)

V1 ⊆ V2 ⇒ I(V1) ⊇ I(V2)
(1.4)
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Part IV

Gröbner Bases: Applications

1 Elimination Theory

Recall that the Gröbner basis generalizes the idea of gcd as seen from the Ideal Membership problem
for polynomial ideals in one variable. Now, we will see that it Gröbner basis also generalizes the
notion of rref and the process of “elimination” of variables is crucial one. This was hinted back
then during our solving of polynomial equations with total degree one which were systems of linear
equations from linear algebra.

Now, the key to eliminating variables from systems of polynomial equations lies in two step

Elimination Step With which we can eliminate certain variables from the equation to get “simpler”
equations to work with and find solutions.

Extension Step Once we have solutions for “simpler” equations we can extend these to get solutions
of original equations.

Definition 1.1 (Elimination Ideal). For an ideal I = ⟨f1, f2, . . . , fs⟩ ⊆ F[x1, x2, . . . , xn], the l−th

elimination ideal Il is the ideal in F[xl+1, xl+2, . . . , xn] defined by

Il = I ∩ F[xl+1, xl+2, . . . , xn] (1.1)

Intuitively, Il consists of functions in I which eliminate the variables x1, x2, . . . , xl. Hence, the
elimination step is to determine elements of Il.

Theorem 1.2 (The Elimination Theorem). For an ideal I =⊆ F[x1, x2, . . . , xn] and its Gröbner
basis G with respect to lex order (x1 > x2 > · · · > xn),

Gl = G ∩ F[xl+1, xl+2, . . . , xn] (1.2)

where Gl is the Gröbner basis of the l−th elimination ideal.

Proof. Gl ⊆ Il by definition. Now, for f ∈ Il ⇒ f ∈ I ⇒ ∃g ∈ G such that LT(g) divides LT(f)⇒
LT(g) ∈ F[xl+1, xl+2, . . . , xn] ⇒ g ∈ F[xl+1, xl+2, . . . , xn] due to lex order (x1 > x2 > · · · > xn) ⇒
g ∈ Gl ⇒ Il ⊆ ⟨Gl⟩. ■

Theorem 1.3 (The Extension Theorem). For an ideal I = ⟨f1, f2, . . . , fs⟩ ⊆ C[x1, x2, . . . , xn] if
its first elimanation ideal is I1. Then,

fi = ci(x2, . . . , xn)x
Ni
1 + terms in x1 with degree < Ni (Ni ≥ 0, ci ∈ C[x2, . . . , xn] \ {0}) (1.3)

If there exists a partial solution (a2, . . . , an) ∈ V(I1)
then (a2, . . . , an) /∈ V(c1, c2, . . . , cs)⇒ ∃a1 ∈ C such that (a1, a2, . . . , an) ∈ V(I).

Notice, how the working field is now C, an algebraically closed field.

2 Implicitization Problem

The problem is to find implicit polynomial equations that represent a variety V ∈ Fn using parametrised
variables.

xi = fi(t1, t2, . . . , tm) (for all i) (2.1)
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Theorem 2.1 (Polynomial Implicitization). For an infinite field F, F : Fm : Fn denotes the
parametrization and an ideal

I = ⟨x1 − f1, x2 − f2, . . . , xn − fn⟩ ⊆ F[t1, t2, . . . , tm, x1, x2, . . . , xn] (2.2)

and Im be its mthelimination ideal. Then V(Im) is the smallest variety in Fn containing F (Fm).

Hence, we can compute Gröbner basis with respect to lex order such that every ti is higher than
xi.

Theorem 2.2 (Rational Implicitization). For an infinite field F, F : Fm \W : Fn denotes the
parametrization and an ideal

xi =
fi(t1, t2, . . . , tm)

gi(t1, t2, . . . , tm)
(for all i) and g = g1g2 · · · gn,W = V(g) (2.3)

I = ⟨g1x1 − f1, g2x2 − f2, . . . , gnxn − fn, 1− gy⟩ ⊆ F[y, t1, t2, . . . , tm, x1, x2, . . . , xn] (2.4)

Im+1 be its (m + 1)thelimination ideal. Then V(I1+m) is the smallest variety in Fn containing
F (Fm \W ).

Hence, we can compute Gröbner basis with respect to lex order such that y and every ti is higher
than xi.

Now, let us look at concrete applications which uses Elimination Theory to solve for polynomial
equations. The entire code for these are available here. I will also add programs for even more
applications.

3 System of Linear Equations

The problem of our interest is

Ax = b (A ∈ Fn×n, and b, x ∈ Fn×1) (3.1)

To convert the problem into polynomial equations, we rewrite it as

fi(x1, x2, . . . , xn) = −bi + ai,1x
1 + ai,2x

2 + · · ·+ ai,nx
n = −bi +

n∑
j=1

ai,jx
j = 0(1 ≤ i, j ≤ n) (3.2)

where ai,j is the entry in the ithrow and jthcolumn of A and bi is the entry in the ithrow of B.

Then, we construct an ideal I = ⟨f1, f2, . . . , fn⟩ and find its Gröbner basis G.

If the system has no solution then G = {1}, else the polynomials of G give exactly the row reduced
echelon form of the augmented matrix [A : b]. To solve such a system, we use Back-Substitution. This
is akin to applying extension theorem to the ideals Il.

The SageMath program to symbolically compute all solutions is attached at the end and can also
be found here

4 System of Polynomial Equations

The problem is to solve, fi(x) = 0 where fi ∈ F[x1, x2, . . . , xn] Similar to the first problem, we
construct an ideal I = ⟨f1, f2, . . . , fn⟩ and find its Gröbner basis G.
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If the system has no solution then G = {1}, else the polynomials of G are in eliminated form. To
solve such a system, we use Back-Substitution. This is akin to applying extension theorem to the
ideals Il. In this case, we will have to solve polynomial equations in one variable, which may require
numerical approximation techniques for higher degree.

The SageMath program to symbolically compute some solutions is attached at the end and can
also be found here.

5 Sudoku

The objective is to fill a m×m grid (m = n2) with integers from 1 to m such that no row or column
or block has a same number appear twice. Any such board, can be represented in the block matrix
form with its each entry being a block of dimension n× n.
We model a sudoku using Boolean Polynomials by creating m · (m2) = m3 variables. m boolean
variables for every element of the grid. Let these variables be denoted by xi,j where 0 ≤ i ≤ m2 − 1
and 0 ≤ j ≤ m− 1, where i represents the element number and j represents the value that element
can take.
There are three kinds of polynomial equations to be created to denote the following conditions,

• for every i, exactly one of xi,j must be 1. This is achieved using following,

∀i,
m−1∑
j=0

∏
k ̸=j

xi,k = 0 (for each i, xi,j = 0 for atleast m− 1 j’s)

∀i,
m−1∑
j=0

xi,j = 1 (for each i, not all xi,j = 0)

(5.1)

• for i1, i2 such that they are in same row or column or block, they should not have the same
number.

m−1∑
j=0

xi1,j · xi2,j = 0 (for all valid (i1, i2) pairs) (5.2)

• encode the given value, if xi is k then xi,j = 1 iff j == k − 1. (i.e., other xi,j = 0)

Now, create an ideal and add all the equations to it as polynomials and find its Gröbner basis G.

• If the system has no solution then G = {1}, else the polynomials of G are in eliminated form.

• If G contains m3 polynomials then there is a unique solution since each of the m3 variable will
have it’s own linear equation (as x2 = x for binary numbers) which is x = 0 or x+ 1 = 0.

• If G contains less than m3 polynomials but more than one then x’s can be both 0 or 1 and x is
either eliminated from the equation or it is uniquely dependent on other variables which are
eliminated at a later stage and the number of elements in G would be less than m3.

Hence, solving if a unqiue solution exists is trivial but if more than one solutions are possible then to
solve such a system, we use Back-Substitution. This is akin to applying extension theorem to the
ideals Il. The SageMath program to symbolically compute all solutions is attached at the end and
can also be found here. Note, even after having 1000+ equations the solution is calculated within 2
minutes if unique.

Note. Our approach was very similar to integer programming and in fact, it can be changed a bit (by
changing the field) to apply for integer programs as well.

17

https://github.com/paramrathour/Groebner-Basis-Applications/blob/main/System of Polynomial Equations Solver.ipynb
https://github.com/paramrathour/Groebner-Basis-Applications/blob/main/Sudoku Solver.ipynb
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