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What is Braess’s Paradox

This is an example of a Veridical Paradox.

Adding capacity to a transportation network can sometimes actually slow
down the traffic!
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Modelling a Transportation Network
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Figure 8.1: A highway network, with each edge labeled by its travel time (in minutes) when
there are x cars using it. When 4000 cars need to get from A to B, they divide evenly over
the two routes at equilibrium, and the travel time is 65 minutes.

travel time (in minutes) when there are x cars using the edge. In this simplified example,

the A-D and C-B edges are insensitive to congestion: each takes 45 minutes to traverse

regardless of the number of cars traveling on them. On the other hand, the A-C and D-B

edges are highly sensitive to congestion: for each one, it takes x/100 minutes to traverse

when there are x cars using the edge.1

Now, suppose that 4000 cars want to get from A to B as part of the morning commute.

There are two possible routes that each car can choose: the upper route through C, or the

lower route through D. For example, if each car takes the upper route (through C), then

the total travel time for everyone is 85 minutes, since 4000/100 + 45 = 85. The same is true

if everyone takes the lower route. On the other hand, if the cars divide up evenly between

the two routes, so that each carries 2000 cars, then the total travel time for people on both

routes is 2000/100 + 45 = 65.

Equilibrium traffic. So what do we expect will happen? The traffic model we’ve described

is really a game in which the players correspond to the drivers, and each player’s possible

strategies consist of the possible routes from A to B. In our example, this means that each

player only has two strategies; but in larger networks, there could be many strategies for

each player. The payoff for a player is the negative of his or her travel time (we use the

negative since large travel times are bad).

1The travel times here are simplified to make the reasoning clearer: in any real application, each road
would have both some minimum travel time, and some sensitivity to the number of cars x that are using it.
However, the analysis here adapts directly to more intricate functions specifying the travel times on edges.

Figure 1: A highway network

I Directed Graph

Edges Highways
Nodes Exits to get on or off a particular Highway.

I Each edge has a designated travel time that depends on the amount
of traffic it contains.
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Strategic Form Games

Definition (Strategic Form Game)
A Strategic Form Game Γ is a tuple ⟨N, (Si )i∈N , (ui )i∈N⟩, where

I N = {1, 2, . . . , n} is a set of players

I S1,S2, . . . ,Sn are sets called the strategy sets of the players 1, 2, . . . , n
respectively

I ui : S1 × S2 × · · · × Sn → R for i = 1, 2, . . . , n are mappings called
the utility functions or payoff functions.
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Representation into a Strategic Form Game
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Figure 8.1: A highway network, with each edge labeled by its travel time (in minutes) when
there are x cars using it. When 4000 cars need to get from A to B, they divide evenly over
the two routes at equilibrium, and the travel time is 65 minutes.

travel time (in minutes) when there are x cars using the edge. In this simplified example,

the A-D and C-B edges are insensitive to congestion: each takes 45 minutes to traverse

regardless of the number of cars traveling on them. On the other hand, the A-C and D-B

edges are highly sensitive to congestion: for each one, it takes x/100 minutes to traverse

when there are x cars using the edge.1

Now, suppose that 4000 cars want to get from A to B as part of the morning commute.

There are two possible routes that each car can choose: the upper route through C, or the

lower route through D. For example, if each car takes the upper route (through C), then

the total travel time for everyone is 85 minutes, since 4000/100 + 45 = 85. The same is true

if everyone takes the lower route. On the other hand, if the cars divide up evenly between

the two routes, so that each carries 2000 cars, then the total travel time for people on both

routes is 2000/100 + 45 = 65.

Equilibrium traffic. So what do we expect will happen? The traffic model we’ve described

is really a game in which the players correspond to the drivers, and each player’s possible

strategies consist of the possible routes from A to B. In our example, this means that each

player only has two strategies; but in larger networks, there could be many strategies for

each player. The payoff for a player is the negative of his or her travel time (we use the

negative since large travel times are bad).

1The travel times here are simplified to make the reasoning clearer: in any real application, each road
would have both some minimum travel time, and some sensitivity to the number of cars x that are using it.
However, the analysis here adapts directly to more intricate functions specifying the travel times on edges.

Figure 2: A highway network

I Assume n = 4000 cars, then N = {1, 2, . . . , 4000}
I Strategy Sets are S1 = S2 = · · · = S4000 = {C ,D}
I Assume nC (nD) cars travel along C (D), Note that nC + nD = n

So, the utility functions are
ui (s1, . . . , sn) = −45 − nC

100
if si = C

= −45 − nD
100

if si = D
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The notion of Nash Equilibrium

Definition (Pure Strategy Nash Equilibrium)
Given a strategic form game Γ = ⟨N, (Si ), (ui )⟩, the strategy profile
s∗ = (s∗1 , s

∗
2 , . . . , s

∗
n ) is called a pure strategy Nash equilibrium of Γ if

ui (s
∗
i , s

∗
−i ) ≥ ui (si , s

∗
−i ) ∀si ∈ Si ∀i = 1, 2, . . . , n

That is, each player’s Nash equilibrium strategy is a best response to
the Nash equilibrium strategies of the other players

Definition (Best Response Correspondence)
Given a strategic form game Γ = ⟨N, (Si ), (ui )⟩,the best response
correspondence for player i is the mapping bi : S−i → 2Si defined by

bi (s−i ) = {si ∈ Si : ui (si , s−i ) ≥ ui (s
′
i , s−i ) ∀ s ′i ∈ Si}

It can be seen that the strategy profile (s∗1 , s
∗
2 , . . . , s

∗
n ) is a pure strategy

Nash equilibrium iff
s∗i ∈ bi (s

∗
−i ),∀i = 1, . . . , n
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Interpretations of Nash Equilibrium

I Prescription

I Prediction

I Self-Enforcing Agreement

I Evolution and Steady-State
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Equilibrium Traffic
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Figure 8.1: A highway network, with each edge labeled by its travel time (in minutes) when
there are x cars using it. When 4000 cars need to get from A to B, they divide evenly over
the two routes at equilibrium, and the travel time is 65 minutes.

travel time (in minutes) when there are x cars using the edge. In this simplified example,

the A-D and C-B edges are insensitive to congestion: each takes 45 minutes to traverse

regardless of the number of cars traveling on them. On the other hand, the A-C and D-B

edges are highly sensitive to congestion: for each one, it takes x/100 minutes to traverse

when there are x cars using the edge.1

Now, suppose that 4000 cars want to get from A to B as part of the morning commute.

There are two possible routes that each car can choose: the upper route through C, or the

lower route through D. For example, if each car takes the upper route (through C), then

the total travel time for everyone is 85 minutes, since 4000/100 + 45 = 85. The same is true

if everyone takes the lower route. On the other hand, if the cars divide up evenly between

the two routes, so that each carries 2000 cars, then the total travel time for people on both

routes is 2000/100 + 45 = 65.

Equilibrium traffic. So what do we expect will happen? The traffic model we’ve described

is really a game in which the players correspond to the drivers, and each player’s possible

strategies consist of the possible routes from A to B. In our example, this means that each

player only has two strategies; but in larger networks, there could be many strategies for

each player. The payoff for a player is the negative of his or her travel time (we use the

negative since large travel times are bad).

1The travel times here are simplified to make the reasoning clearer: in any real application, each road
would have both some minimum travel time, and some sensitivity to the number of cars x that are using it.
However, the analysis here adapts directly to more intricate functions specifying the travel times on edges.

Figure 3: A highway network

I First consider case when nC ̸= nD , then the two routes will have
unequal travel times, and any driver on the slower route would have
an incentive to switch to the faster one.

I Hence any list of strategies in which nC is not equal to 2000 cannot
be a Nash equilibrium; and any list of strategies in which
nC = nD = 2000 is a Nash equilibrium.

I Time delay = 45 + 2000
100 = 65 minutes
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Adding a Route from C to D
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Figure 8.2: The highway network from the previous figure, after a very fast edge has been
added from C to D. Although the highway system has been “upgraded,” the travel time at
equilibrium is now 80 minutes, since all cars use the route through C and D.

benefit by changing their route: with traffic snaking through C and D the way it is, any

other route would now take 85 minutes. And to see why it’s the only equilibrium, you can

check that the creation of the edge from C to D has in fact made the route through C and

D a dominant strategy for all drivers: regardless of the current traffic pattern, you gain by

switching your route to go through C and D.

In other words, once the fast highway from C to D is built, the route through C and

D acts like a “vortex” that draws all drivers into it — to the detriment of all. In the new

network there is no way, given individually self-interested behavior by the drivers, to get

back to the even-balance solution that was better for everyone.

This phenomenon — that adding resources to a transportation network can sometimes

hurt performance at equilibrium — was first articulated by Dietrich Braess in 1968 [76],

and it has become known as Braess’s Paradox. Like many counterintuitive anomalies, it

needs the right combination of conditions to actually pop up in real life; but it has been

observed empirically in real transportation networks — including in Seoul, Korea, where the

destruction of a six-lane highway to build a public park actually improved travel time into

and out of the city (even though traffic volume stayed roughly the same before and after the

change) [37].

Some reflections on Braess’s paradox. Having now seen how Braess’s paradox works,

we can also appreciate that there is actually nothing really “paradoxical” about it. There are

many settings in which adding a new strategy to a game makes things worse for everyone.

For example, the Prisoner’s Dilemma from Chapter 6 can be used to illustrate this point: if

Figure 4: A highway network

I Now, a fast link from C to D to ease the congestion in the network
is introduced

I We will assume the travel time from C to D to be zero as a
degenerate case
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Representation into a Strategic Form Game
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Figure 8.2: The highway network from the previous figure, after a very fast edge has been
added from C to D. Although the highway system has been “upgraded,” the travel time at
equilibrium is now 80 minutes, since all cars use the route through C and D.

benefit by changing their route: with traffic snaking through C and D the way it is, any

other route would now take 85 minutes. And to see why it’s the only equilibrium, you can

check that the creation of the edge from C to D has in fact made the route through C and

D a dominant strategy for all drivers: regardless of the current traffic pattern, you gain by

switching your route to go through C and D.

In other words, once the fast highway from C to D is built, the route through C and

D acts like a “vortex” that draws all drivers into it — to the detriment of all. In the new

network there is no way, given individually self-interested behavior by the drivers, to get

back to the even-balance solution that was better for everyone.

This phenomenon — that adding resources to a transportation network can sometimes

hurt performance at equilibrium — was first articulated by Dietrich Braess in 1968 [76],

and it has become known as Braess’s Paradox. Like many counterintuitive anomalies, it

needs the right combination of conditions to actually pop up in real life; but it has been

observed empirically in real transportation networks — including in Seoul, Korea, where the

destruction of a six-lane highway to build a public park actually improved travel time into

and out of the city (even though traffic volume stayed roughly the same before and after the

change) [37].

Some reflections on Braess’s paradox. Having now seen how Braess’s paradox works,

we can also appreciate that there is actually nothing really “paradoxical” about it. There are

many settings in which adding a new strategy to a game makes things worse for everyone.

For example, the Prisoner’s Dilemma from Chapter 6 can be used to illustrate this point: if

Figure 5: A highway network

I Again, assume n = 4000 cars, then N = {1, 2, . . . , 4000}
I Strategy Sets are S1 = S2 = · · · = S4000 = {C ,D,CD}
I Assume nC (nD) (nCD) cars travel along C (D) (CD), Note that

nC + nD + nCD = n

So, the utility functions are

ui (s1, . . . , sn) = −45 − nC + nCD
100

if si = C

= −45 − nD + nCD
100

if si = D

= −nC + nCD
100

− nD + nCD
100

if si = CD 10
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Equilibrium Traffic
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Figure 8.2: The highway network from the previous figure, after a very fast edge has been
added from C to D. Although the highway system has been “upgraded,” the travel time at
equilibrium is now 80 minutes, since all cars use the route through C and D.

benefit by changing their route: with traffic snaking through C and D the way it is, any

other route would now take 85 minutes. And to see why it’s the only equilibrium, you can

check that the creation of the edge from C to D has in fact made the route through C and

D a dominant strategy for all drivers: regardless of the current traffic pattern, you gain by

switching your route to go through C and D.

In other words, once the fast highway from C to D is built, the route through C and

D acts like a “vortex” that draws all drivers into it — to the detriment of all. In the new

network there is no way, given individually self-interested behavior by the drivers, to get

back to the even-balance solution that was better for everyone.

This phenomenon — that adding resources to a transportation network can sometimes

hurt performance at equilibrium — was first articulated by Dietrich Braess in 1968 [76],

and it has become known as Braess’s Paradox. Like many counterintuitive anomalies, it

needs the right combination of conditions to actually pop up in real life; but it has been

observed empirically in real transportation networks — including in Seoul, Korea, where the

destruction of a six-lane highway to build a public park actually improved travel time into

and out of the city (even though traffic volume stayed roughly the same before and after the

change) [37].

Some reflections on Braess’s paradox. Having now seen how Braess’s paradox works,

we can also appreciate that there is actually nothing really “paradoxical” about it. There are

many settings in which adding a new strategy to a game makes things worse for everyone.

For example, the Prisoner’s Dilemma from Chapter 6 can be used to illustrate this point: if

Figure 6: A highway network

I A surprising result is that now there is a unique Nash equilibrium
(every driver uses the route CD).

I Why is it an equilibrium?

I Why is it unique?

I Time delay = 4000
100 + 4000

100 = 80 minutes

I This, time is clearly worse than 65 minutes we can get if half the
people choose C and other the half choose D
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Big Questions

8.3. ADVANCED MATERIAL: THE SOCIAL COST OF TRAFFIC AT EQUILIBRIUM235
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(b) The Nash equilibrium.

Figure 8.4: A version of Braess’s Paradox: In the socially optimal traffic pattern (on the
left), the social cost is 28, while in the unique Nash equilibrium (on the right), the social
cost is 32.

pattern? We have seen examples in Chapter 6 of games where equilibria do not exist using

pure strategies, and it is not a priori clear that they should always exist for the traffic game

we’ve defined here. However, we will find in fact that equilibria always do exist. The second

main question is whether there always exists an equilibrium traffic pattern whose social cost

is not much more than the social optimum. We will find that this is in fact the case: we

will show a result due to Roughgarden and Tardos that there is always an equilibrium whose

social cost is at most twice that of the optimum [353].2

A. How to Find a Traffic Pattern at Equilibrium

We will prove that an equilibrium exists by analyzing the following procedure that explicitly

searches for one. The procedure starts from any traffic pattern. If it is an equilibrium, we

are done. Otherwise, there is at least one driver whose best response, given what everyone

else is doing, is some alternate path providing a strictly lower travel time. We pick one such

driver and have him switch to this alternate path. We now have a new traffic pattern and

we again check whether it is an equilibrium — if it isn’t, then we have some driver switch

to his best response, and we continue in this fashion.

This procedure is called best-response dynamics, since it dynamically reconfigures the

2In fact, stronger results of Roughgarden and Tardos, supplemented by subsequent results of Anshelevich
et al. [18], establish that in fact every equilibrium traffic pattern has social cost at most 4/3 times the
optimum. (One can show that this implies their result on the Braess Paradox cited in the previous section
— that with linear travel times, adding edges can’t make things worse by a factor of more than 4/3.)
However, since it is harder to prove the bound of 4/3, we limit ourselves here to proving the easier but
weaker factor of 2 between the social optimum and some equilibrium traffic pattern.

I Does an equilibrium traffic pattern always exists?

I How bad Braess’s Paradox can be for networks in general?

I How much larger can the equilibrium travel time be after the
addition of an edge, relative to what it was before?

I How to design networks to prevent bad equilibria from arising?
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