
Dining Philosophers: A Synchronization Problem
CS347 Operating Systems

Rathour Param Jitendrakumar
190070049

Department of Electrical Engineering
Indian Institue of Technology Bombay

Spring 2021-22

When you go to sleep make sure there is someone to wake you up.
(Prof. Mythili Vutukuru)

Param (IIT Bombay) Dining Philosophers Spring 2021-22 1 / 29

Outline

1 Problem Formulation
The Setup
The Problem

2 Semaphores – Focusing on Forks
Introduction
Incorrect Solution
Correct Solution

3 Condition Variables – Focusing on Philosophers
Introduction
Incorrect Solution
Correct Solution

Param (IIT Bombay) Dining Philosophers Spring 2021-22 2 / 29

Problem Formulation
The Setup

N philosophers denoted by Pi , i ∈ [N] ≜ {0, ...,N − 1} around a circular table.

The table contains
▶ N plates - a plate in front of each philosopher denoted by pi , i ∈ [N].
▶ N forks - in between two consecutive plates denoted by fi , i ∈ [N].
▶ a huge bowl of spaghetti in the centre of table.

Pi has pi in their front and fi , f(i+1)%N to their right and left respectively.

4.4 Dining philosophers 87

4.4 Dining philosophers

The Dining Philosophers Problem was proposed by Dijkstra in 1965, when di-
nosaurs ruled the earth [3]. It appears in a number of variations, but the stan-
dard features are a table with five plates, five forks (or chopsticks) and a big
bowl of spaghetti. Five philosophers, who represent interacting threads, come
to the table and execute the following loop:

Basic philosopher loop

1 while True:

2 think ()

3 get_forks ()

4 eat()

5 put_forks ()

The forks represent resources that the threads have to hold exclusively in
order to make progress. The thing that makes the problem interesting, unreal-
istic, and unsanitary, is that the philosophers need two forks to eat, so a hungry
philosopher might have to wait for a neighbor to put down a fork.

Assume that the philosophers have a local variable i that identifies each
philosopher with a value in (0..4). Similarly, the forks are numbered from 0 to
4, so that Philosopher i has fork i on the right and fork i+ 1 on the left. Here
is a diagram of the situation:

2

1

0

4

3

2

3

0 1

4

Assuming that the philosophers know how to think and eat, our job is to
write a version of get forks and put forks that satisfies the following con-
straints:

• Only one philosopher can hold a fork at a time.

• It must be impossible for a deadlock to occur.

• It must be impossible for a philosopher to starve waiting for a fork.

• It must be possible for more than one philosopher to eat at the same time.

Figure: Example1 when N = 5

1
Downey Allen B. The Little Book of Semaphores

Param (IIT Bombay) Dining Philosophers Spring 2021-22 3 / 29

Problem Formulation
The Philosopher

A philosopher can start eating only after picking up the forks on their left and right.

Till they start eating, they will be ‘thinking’.

Generic Behaviour of a philosopher:

while (True){

think()

pick_up_forks()

eat()

put_down_forks()

}

Param (IIT Bombay) Dining Philosophers Spring 2021-22 4 / 29

Problem Formulation
The Problem

Write pick_up_forks and put_down_forks satisfying the following

Constraints
▶ A fork can be used by only one philosopher at any instant.
▶ No deadlock should occur.
▶ No philosopher should starve forever.
▶ At least two philosophers can eat at same time.

Assumptions
▶ think and eat are known (possibly unique for each philosophers).
▶ eat has to terminate.

The intuition here is that the philosophers represent the threads and forks represent the
resources needed for these threads to proceed.

A complicated problem as a thread can possibly context switch anytime during its execution

Param (IIT Bombay) Dining Philosophers Spring 2021-22 5 / 29

Problem Formulation
The Notation

The right and left philosopher for i th philosopher are given by:

right_p(i) = (i-1)\%N

left_p(i) = (i+1)\%N

The right and left fork for i th philosopher are given by:

right_f(i) = i

left_f(i) = (i+1)\%N

We may refer to philosophers as threads

A philosopher P0 successfully completes/finishes when it goes back to thinking.

A scheduled thread is active when it has run at least once.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 6 / 29

Semaphores
Introduction

Semaphores are used to achieve synchronization between threads.

A semaphore is essentially a variable with an underlying counter

The counter value can’t be accessed once it is initialised with a suitable value.

For a semaphore variable s,
▶ When a thread calls down(s), the counter is decremented and the thread is blocked if the

counter value becomes negative.
▶ When a thread calls up(s), the counter is incremented and any one of blocked threads is woken

up (‘ready to run’ again).

Param (IIT Bombay) Dining Philosophers Spring 2021-22 7 / 29

Semaphores – Focusing on Forks
Incorrect Solution

Create N semaphore variables, one for each fork denoted by si = 1, i ∈ [N].

Pseudocode:

function pick_up_forks(philosopher i){

down(s_{right_f(i)})

down(s_{left_f(i)})

}

function put_down_forks(philosopher i){

up(s_{left_f(i)})

up(s_{right_f(i)})

}

Param (IIT Bombay) Dining Philosophers Spring 2021-22 8 / 29

Semaphores – Incorrect Solution
Example – Deadlock

Example

Say for N = 3 case, the schedule is P0, P1, P2 (another example would be P0, P2, P1.)

P0 will get the right fork f0 by calling down(s_{right_f(0)}) = down(s_0) which will
make s0 = 0. Now, suppose P0 gets context switched then P1 begins.

P1 will get the right fork f1 by calling down(s_{right_f(1)}) = down(s_1) which will
make s1 = 0. Now, suppose P1 gets context switched then assuming P2 begins,

P2 will get the right fork f2 by calling down(s_{right_f(2)}) = down(s_2) which will
make s2 = 0. Now, every Pi will have a single fork fi .

Now, if any thread Pi executes down(s_{left_f(i)}), then for fleft(i), sleft(i) = −1. Hence,
that thread will be sent to sleep.

Each thread will try to access their ‘left fork‘ and will be sent to eternal sleep. A deadlock!

Param (IIT Bombay) Dining Philosophers Spring 2021-22 9 / 29

Semaphores
Incorrect Solution – Why Deadlock?

Proof.
Intuitively, suppose each philosopher simultaneously picks up the fork to their right, then all
forks are occupied. There are no ‘available forks’ to any philosopher’s left.

Formally, if each thread gets context switched just after executing
down(s_{right_f(i)}), then this will result in si = 0, i ∈ [N].

Now, if any thread Pi gets scheduled and executes down(s_{left_f(i)}), then for that
fork’s semaphore sleft(i) = −1. Hence, that thread will be sent to sleep.

Similarly, each thread will try to access their ‘left fork‘ and will be sent to sleep.

To awake them, some thread must give signal which is not possible as all threads are sleeping.
A deadlock!

Note that the above case is possible for any scheduling of threads as we haven’t made any
assumption on scheduling in the proof.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 10 / 29

Semaphores
Correct Solution

In addition to the N semaphore variables, one for each fork si = 1, i ∈ [N],

create another semaphore variable called max = N − 1, denoting the maximum number of
philosophers allowed to eat at any instant.

Revised pseudocode:

function pick_up_forks(philosopher i){

down(max)

down(s_{right_f(i)})

down(s_{left_f(i)})

}

function put_down_forks(philosopher i){

up(s_{left_f(i)})

up(s_{right_f(i)})

up(max)

}

Param (IIT Bombay) Dining Philosophers Spring 2021-22 11 / 29

Semaphores – Correct Solution
Example 1

Example

Say for N = 3 case, the schedule is P0, P1, P2

Let’s assume that no context switches can occur during the execution of pick_up_forks
and put_down_forks (unless it sleeps due to semaphore).

P0 will get both it’s ‘right and left fork’ (f0 and f1) and P0 will start eating.

Now, one of the two things can happen:
▶ P0 successfully completes everything
▶ P0 gets context switched out before it can put down its both forks.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 12 / 29

Semaphores – Correct Solution
Example 1

Example (continued)

In the first case, P1 will get both it’s ‘right and left fork’ and it will start eating using f1 and
f2, whereas in the second case P1 will only be able to get one fork (f2) and will go to sleep.

P0 will complete eating and thus its job at sometime due to assumption that eat has to
terminate. So, forks f0 and f1 will be available later for other threads.

Even in the 2nd case after completion of P0, P1 will wake up and start eating using f1 and f2.

Hence, P2 will get a fork f0 and will go to sleep waiting for P1 to complete.

Once P1 completes eventually, P2 will be woken up and it will also get completed.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 13 / 29

Semaphores – Correct Solution
Example 2

Example

Say for N = 3 case, the schedule is P0, P1, P2

If any thread is able to pick up both forks, it will eventually finish and the analysis will be
similar to Example 1.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 14 / 29

Semaphores – Correct Solution
Example 2

Example (continued)

So let’s try the worst case, when each thread gets context switched just after picking up right
fork, now the max semaphore comes into picture.

P0 and P1 will get their right fork f0, f1 respectively.

Only two of three threads can be active at a time. As both P0 and P1 are yet not completed,
When P2 tries to pick up forks, it is sent to sleep as max becomes −1.

So, P0 and P1, will be able to pick up atleast one fork i.e. the uncommon forks.

Also, one of them will surely pick up the common fork between them f1. So that thread will
start eating.

Eventually, it will finish and now the other thread will pick up f1 and start eating .

Now, P2 will be woken up and once the older thread finishes, P2 will start eating.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 15 / 29

Semaphores – Correct Solution

Proof.

WLOG say initially Pi is scheduled earlier than Pj for all j > i where, i , j ∈ [N].

If we are able to show that any thread is able to pick up both forks, then it will eventually
finish and now we will be left with same forks but one less thread.

Due to max , at most N − 1 threads have begun but there are N forks. So, by pigeonhole
principle one thread (say Pi) will get two forks which will be done by pick_up_forks.

Semaphore variables, ensure that multiple threads can’t access same fork at a time.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 16 / 29

Semaphores – Correct Solution

Proof (continued).

So eventually Pi will start eating and finish eating.

Then, Pi will execute put_down_forks and will free its forks for the neighbours.

So eventually Pi will finish and we will be left with one less thread.

If one thread was able to finish when a total of k threads were active, then one thread can
definitely finish when a total of k − 1 threads were active as we can always add a thread
which does nothing.

So, we have recursively shown that all threads will finish.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 17 / 29

Condition Variables
Introduction

Condition variables are also used to achieve synchronization between threads.

They communicate between threads when certain conditions becomes true.

For a condition variable cv,
▶ When a thread calls wait(cv), it is added to a list of waiting threads for cv and is blocked.

This list is maintained for every condition variable.
▶ When a thread calls signal(cv), any one of blocked threads is woken up (‘ready to run’ again).

There is no immediate context switch, it will be scheduled later.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 18 / 29

Condition Variables – Focusing on Philosophers
Incorrect Solution

Create N condition variables, one for each philosopher denoted by ci , i ∈ [N].

Create N state variables, one for each philosopher denoted by xi = T , where i ∈ [N] and xi ∈ {E ,T}
denoting whether the philosopher is Eating or Thinking.

Pseudocode:

function pick_up_forks(philosopher i){

while (s_{right_p(i)} = E OR s_{left_p(i)} = E)

wait(c_i)

s_i = E

}

function put_down_forks(philosopher i){

s_i = T

if (s_{right_p(right_p(i)} = T)

signal(c_{right_p(i)}

if (s_{left_p(left_p(i)} = T)

signal(c_{left_p(i)}

}

Param (IIT Bombay) Dining Philosophers Spring 2021-22 19 / 29

Condition Variables – Incorrect Solution
Example 1 – Deadlock

Example

Say for N = 3 case, the schedule is P0, P1, P2

For P0, both its ‘right and left neighbour’ (P2 and P1) are thinking. So, P0 exits while loop
and changes its state to eating.

Now when P1 pick_up_forks is executed, the while loop condition fails as P0 is still eating.

Suppose, P1 is context switched just before it can go to sleep. Also, same happens with P2.

Now when P0 completes eating it will execute put_down_forks, which changes its state
back to thinking and sends the signal to wake up P1 and P2 using c1 and c2 respectively.

Now, when P1 and P2 will come back they will execute the wait statement ignorant of the
fact that P0 is already completed

So both P1 and P2, will go to eternal sleep, called a missed wakeup problem and a deadlock!

Param (IIT Bombay) Dining Philosophers Spring 2021-22 20 / 29

Condition Variables – Incorrect Solution
Example 2 – Race Condition

Example

Say for N = 3 case, the schedule is P0, P1, P2

For P0, both its ‘right and left philosopher’ (P2 and P1) are thinking. So, P0 exits while loop.

Now, suppose P0 gets context switched before P0 changes its state to eating.

For P1, both its ‘right and left neighbour’ (P0 and P2) are thinking. So, P1 exits while loop
and changes its state to eating.

Now even if P2 is scheduled next, it will remain in while loop and go to sleep as P1 is eating.
So P0 comes back and changes its state to eating.

The above will imply two neighbouring philosophers are eating simultaneously by using a
common fork which should not happen, a race condition!

Param (IIT Bombay) Dining Philosophers Spring 2021-22 21 / 29

Condition Variables
Correct Solution

Pseudocode:

function pick_up_forks(philosopher i){

lock(mutex)

while (s_{right_p(i)} = E OR s_{left_p(i)} = E)

wait(c_i, mutex)

s_i = E

unlock(mutex)

}

function put_down_forks(philosopher i){

lock(mutex)

s_i = T

if (s_{right_p(right_p(i)} = T)

signal(c_{right_p(i)}

if (s_{left_p(left_p(i)} = T)

signal(c_{left_p(i)}

unlock(mutex)

}

Param (IIT Bombay) Dining Philosophers Spring 2021-22 22 / 29

Condition Variables – Correct Solution
Example 1

Example

Say for N = 3 case, the schedule is P0, P1, P2

P0 first acquires the lock, then as both its ‘right and left neighbour’ (P2 and P1) are thinking,
P0 exits while loop and changes its state to eating and releases the lock.

Now when P1 pick_up_forks is executed it acquires the lock but the while loop condition
fails as P0 is still eating.

Suppose, P1 is context switched just before it can go to sleep. Then as P1 has not yet released
the lock, P0, P2 will keep waiting for put_down_forks and pick_up_forks respectively.

The lock will be released only when P1 comes back and executes wait. The lock is released
only after ensuring that list of waiting processes contains P1. Then P1 goes to sleep.

If P2 is scheduled earlier than P0, then it will go to sleep eventually (directly or like in P1).

Param (IIT Bombay) Dining Philosophers Spring 2021-22 23 / 29

Condition Variables – Correct Solution
Example 1

Example (continued)

When P0 completes eating it will execute put_down_forks and acquire the lock then change
its state back to thinking and signal P1 and P2 using c1 and c2 respectively.

Now, whoever among P1 and P2 will come back first (say P1) will reacquire lock and will
release the lock only after changing its state and then it can start eating.

Even if there are more random context switches P1 will start eating first as P2 will have to
wait till the P1 state changes back to thinking. So, P1 will eventually finish.

Then the last thread will do the formality.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 24 / 29

Condition Variables – Correct Solution
Example 2

Example

Say for N = 3 case, the schedule is P0, P1, P2

P0 executes pick_up_forks and first acquires the lock, as both its ‘right and left philosopher’
(P2 and P1) are thinking. So, P0 exits while loop.

Now, suppose P0 gets context switched before P0 changes its state to eating.

As P0 still hasn’t released the lock, whichever thread is scheduled next (say P1), it can’t
acquire the lock in pick_up_forks and will be put to sleep.

If P2 is scheduled earlier than P0, then it will go to sleep eventually (directly or like in P1).

When P0 comes back, it will change its state and release the lock and signal any one of
neighbours (say P1) to wake up. Also, P0 can now start eating.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 25 / 29

Condition Variables – Correct Solution
Example 2

Example (continued)

Now, P1 will acquire lock but it will be put to sleep as P0’s state is eating. The lock is
released only after ensuring that list of waiting processes contains P1. Then P1 goes to sleep.

When P0 completes eating it will execute put_down_forks and acquire the lock then change
its state back to thinking and signal P1 and P2 using c1 and c2 respectively.

Now, whoever among P1 and P2 will come back first (say P1) will reacquire lock and will
release the lock only after changing its state and then it can start eating.

Even if there are more random context switches P1 will start eating first as P2 will have to
wait till the P1 state changes back to thinking. So, P1 will eventually finish.

Then the last thread will do the formality.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 26 / 29

Condition Variables – Correct Solution

The proof’s structure is similar to the proof for Semaphores

Proof.

WLOG say initially Pi is scheduled earlier than Pj for all j > i where, i , j ∈ [N].

If we are able to show that any thread is able to pick up both forks, then it will eventually
finish and now we will be left with same forks but one less thread.

The condition variables are set up in such a way that either the thread will guaranteedly pick
up both forks (say Pi) or it can’t pick any.

Now once Pi pick_up_forks starts execution, Pi will acquire a lock. So, even in the case
of context switching its neighbours simply can’t acquire lock in pick_up_forks until Pi

completes pick_up_forks

Intuitively, we can be sure that the state changes only when both forks are available. Hence,
multiple threads can’t access same fork at a time.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 27 / 29

Condition Variables – Correct Solution

Proof (continued).

So eventually Pi will start eating and finish eating.

Pi will execute put_down_forks and change its state allowing its neighbours to get forks.

If one thread was able to finish when a total of k threads were active, then one thread can
definitely finish when a total of k − 1 threads were active since we can always add a thread
which does nothing.

So, we have recursively shown that all threads will finish.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 28 / 29

References

Downey Allen B.
The Little Book of Semaphores (2nd Edition).
v2.1.5 edition, 2019.

IIT Bombay Mythili Vutukuru.
Concurrency: Slides and practice problems.
URL: https://www.cse.iitb.ac.in/~mythili/os/.

Param (IIT Bombay) Dining Philosophers Spring 2021-22 29 / 29

https://www.cse.iitb.ac.in/~mythili/os/

	Problem Formulation
	The Setup
	The Problem

	Semaphores – Focusing on Forks
	Introduction
	Incorrect Solution
	Correct Solution

	Condition Variables – Focusing on Philosophers
	Introduction
	Incorrect Solution
	Correct Solution

	Appendix
	References

