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Distributed Matrix Multiplication
Problem formulation

We have two input matrices

A ∈ Fs×r
q

B ∈ Fs×t
q for some sufficiently large finite field Fq

To compute C = ATB. It is implicitly assumed in general that one of these
matrices is tall.

Each worker has to be assigned fraction of the coded a fraction of the submatrix

Each of the N workers stores 1
m fraction of A and 1

n fraction of B where m, n ∈ N

Thus Ai ∈ Fs× r
m

q and Bi ∈ Fs× t
n

q

Idea is for the master to use something like an MDS encoding to generate each of these
sub matrices such that it has to wait only for k of these workers(fastest) to generate the
output in order to uniquely identify the product.
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Problem Formulation
Key Ideas

. . . 

Figure: Overview of the distributed matrix multiplication problem1.

1
Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal

coding,” 2020.
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Computation Strategy

Choice of functions

A computation strategy is defined as a set of 2N functions

f = (f0, f1.....fN−1)

g = (g0, g1.....gN−1)

that are used to compute Ai = fi (A), Bi = gi (B) ∀i ∈ {0, 1, 2, ...N − 1}

For any integer k we say that the system is k recoverable if the master can recover the
product C using output from any k workers
We define k(f , g) as the least integer k for which the system defined by f , g is k
recoverable
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Computation Strategy

Optimum Recovery Threshold

The lowest among the recovery thresholds across all computation strategies

K ∗ = min
f ,g

k(f , g)

State-of-the-art schemes include

1D MDS scheme

K1D MDS = N − N

n
+m

In the same paper an alternative scheme for the special case of m = n referred to
as the product code achieves a threshold of

Kprod = 2(m − 1)
√
N − (m − 1)2 + 1
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Main Result

Theorem

The distributed matrix multiplication problem of computing ATB described above has a
minimum recovery threshold of

K ∗ = mn

Further ∃ a computation strategy referred to as polynomial code which achieves the
above K ∗ which allows for efficient decoding at the master node with computational
complexity of polynomial decoding with mn points.

Decoding polynomials codes essentially a polynomial interpolation problem, which can be
solved in time almost linear to the input size.This is enabled by designing the computing
strategies such that the computed products form a Reed-Solomon code.

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 7 / 27



Main Result

Theorem

The distributed matrix multiplication problem of computing ATB described above has a
minimum recovery threshold of

K ∗ = mn

Further ∃ a computation strategy referred to as polynomial code which achieves the
above K ∗ which allows for efficient decoding at the master node with computational
complexity of polynomial decoding with mn points.

Decoding polynomials codes essentially a polynomial interpolation problem, which can be
solved in time almost linear to the input size.This is enabled by designing the computing
strategies such that the computed products form a Reed-Solomon code.

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 7 / 27



Main Result

Theorem

The distributed matrix multiplication problem of computing ATB described above has a
minimum recovery threshold of

K ∗ = mn

Further ∃ a computation strategy referred to as polynomial code which achieves the
above K ∗ which allows for efficient decoding at the master node with computational
complexity of polynomial decoding with mn points.

Decoding polynomials codes essentially a polynomial interpolation problem, which can be
solved in time almost linear to the input size.This is enabled by designing the computing
strategies such that the computed products form a Reed-Solomon code.

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 7 / 27



Comparison of the four thresholds
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Figure: Comparison2

2
Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal

coding,” 2020.
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Proof I

A sketch of the proof

Given parameters α, β ∈ N, we define the (α, β)- polynomial code ∀i ∈ {0, 1....N − 1}
as

Ai =
m−1∑
j=0

Ajx
jα
i

Bi =
n−1∑
j=0

Bjx
jβ
i

Ci = Ai
T
Bi =

m−1∑
j=0

n−1∑
k=0

AT
j Bkx

jα+kβ
i

Note here we need to carefully choose α and β such that no two terms have the same
power of x . One such choice being α = 1, β = m. we define h(x) as follows
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Proof II

h(x) =
m−1∑
j=0

n−1∑
k=0

AT
j Bkx

j+kβ

This is polynomial of degree mn − 1. Since xi are chosen to be different in order to
recover C we need the output from any mn workers which is essentially interpolating
using mn points, For even less complex decoding we may use the Reed Solomon decoding
algorithm.

So far we have a scheme that achieves the bound in the theorem. We need to prove that
we require output from atleast mn workers to recover C in order to prove optimality

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 10 / 27



Proof II

h(x) =
m−1∑
j=0

n−1∑
k=0

AT
j Bkx

j+kβ

This is polynomial of degree mn − 1. Since xi are chosen to be different in order to
recover C we need the output from any mn workers which is essentially interpolating
using mn points, For even less complex decoding we may use the Reed Solomon decoding
algorithm.

So far we have a scheme that achieves the bound in the theorem. We need to prove that
we require output from atleast mn workers to recover C in order to prove optimality

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 10 / 27



Proof II

h(x) =
m−1∑
j=0

n−1∑
k=0

AT
j Bkx

j+kβ

This is polynomial of degree mn − 1. Since xi are chosen to be different in order to
recover C we need the output from any mn workers which is essentially interpolating
using mn points, For even less complex decoding we may use the Reed Solomon decoding
algorithm.

So far we have a scheme that achieves the bound in the theorem. We need to prove that
we require output from atleast mn workers to recover C in order to prove optimality

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 10 / 27



Proof III

A sketch of this proof is as follows

WLOG Let A be an arbitrary fixed tall matrix (s ≥ r) and B is sampled from a
uniform distribution over Fs×t

q

Thus one can check the distribution of C = ATB will be uniform over Fr×t
q

This means we need to recover a random variable with entropy H(C ) = rt log q

Since each worker outputs rt
mn elements of Fq it provides atmost rt

mn log q bits of
information

hence K > mn
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Performance of the polynomial code on other evaluation metrics
Computation latency is defined as the amount of time required for the master
to collect enough information to decode C, For any other computation strategy we
have

T ≥ Tpoly

Probability of failure given a deadline is defined as the probability that the master
does not receive enough information to decode C at a predefined time t

P(T > t) ≥ P(Tpoly > t)

Communication load is defined as the minimum number of bits needed to be
extracted in order to complete the computation. The below mentioned bound is
achieved by the polynomial code.

L∗ = rt log2 q

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 12 / 27



Performance of the polynomial code on other evaluation metrics
Computation latency is defined as the amount of time required for the master
to collect enough information to decode C, For any other computation strategy we
have

T ≥ Tpoly

Probability of failure given a deadline is defined as the probability that the master
does not receive enough information to decode C at a predefined time t

P(T > t) ≥ P(Tpoly > t)

Communication load is defined as the minimum number of bits needed to be
extracted in order to complete the computation. The below mentioned bound is
achieved by the polynomial code.

L∗ = rt log2 q

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 12 / 27



Performance of the polynomial code on other evaluation metrics
Computation latency is defined as the amount of time required for the master
to collect enough information to decode C, For any other computation strategy we
have

T ≥ Tpoly

Probability of failure given a deadline is defined as the probability that the master
does not receive enough information to decode C at a predefined time t

P(T > t) ≥ P(Tpoly > t)

Communication load is defined as the minimum number of bits needed to be
extracted in order to complete the computation. The below mentioned bound is
achieved by the polynomial code.

L∗ = rt log2 q

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 12 / 27



Polynomial Evaluation
Problem Formulation

We have a distributed computing environment with a master and N workers

Dataset X = (X1, . . . ,Xk) where Xi is a element of a vector space V over F
f : V → U is a multivariate polynomial with vector coefficients and degree = deg f

To compute Y1 ≜ f (X1), . . . ,YK ≜ f (XK )

Each worker has already stored a fraction of the coded dataset prior to computation

The i th worker stores X̃i ≜ gi (X1, . . . ,XK ), where gi is a (possibly random) function,
refered to as the encoding function of that worker. ( i ∈ [N] and [N] ≜ {1, . . . ,N})
Each worker i ∈ [N] computes Ỹi ≜ f (X̃i ) and returns the result to the master.

The master waits for a subset of fastest workers and then decodes Y1, . . . ,YK .
Linear encoding strategy gives simple yet concrete implmentation,
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Some Polynomial Evaluations tasks

Example (Linear Computation)

• Compute Ab⃗ for some dataset A = {Ai}Ki=1 and vector b⃗

Let V be the space of matrices over F, U be the space of vectors over F, Xi be Ai ,
and f (Xi ) = Xi · b⃗ for all i ∈ [K ]. (suitable dimensions to be assigned to V,U)

Example (Bilinear Computation)

• Compute element-wise products {Ai · Bi}Ki=1 of two matrices {Ai}Ki=1 and {Bi}Ki=1.
Let V be the space of pairs of two matrices, U be the space of matrices, Xi = (Ai ,Bi ),
and f (Xi ) = Ai · Bi for all i ∈ [K ]. (suitable dimensions to be assigned to V,U)
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and f (Xi ) = Ai · Bi for all i ∈ [K ]. (suitable dimensions to be assigned to V,U)
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Result on Minimum Workers required for recovery

Theorem

Given a number of workers N and a dataset X = (X1, . . . ,XK ), for distributedly com-
puting f , the minimum recovery threshold is given by

K ∗ =

{
(K − 1) deg f + 1 K deg f − 1 ≤ N

N − ⌊N/K⌋+ 1 else
(1)

Theorem

The Lagrange Coded Computing is optimal i.e. it minimizes the recovery threshold

Proof.

Coming up.
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Polynomial Interpolation

Given a set of N + 1 data points (xi , yi ) where no two xi are the same, a polynomial
p : R → R is said to interpolate the data if p(xj) = yj for each j ∈ [N + 1]

Construction using System of Linear Equations

Suppose that the interpolation polynomial is in the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0

Now, we can frame a system of linear equations as p(xi ) = yi for i ∈ [N + 1]
xn0 xn−1

0 xn−2
0 . . . x0 1

xn1 xn−1
1 xn−2

1 . . . x1 1
...

...
...

...
...

xnn xn−1
n xn−2

n . . . xn 1




an
an−1
...
a0

 =


y0
y1
...
yn

 .
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Lagrange Interpolation3

p(x) =
(x − x1)(x − x2) · · · (x − xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
y0 + · · ·+ (x − x0)(x − x1) · · · (x − xn−1)

(xn − x0)(xn − x1) · · · (xn − xn−1)
yn

p(x) =
n∑

i=0

( ∏
0≤ j ≤ n

j ̸= i

x − xj
xi − xj

)
yi (2)

3
https://commons.wikimedia.org/wiki/File:Lagrange_polynomial.svg
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Lagrange Coded Computing
Key Ideas

The Lagrange interpolation polynomial is used to create encoding of the input
dataset inserting computational redundancy in a coded form across the workers.

The computations at the each worker amount to evaluations of a composition of
this polynomial with the desired function f resulting in another polynomial hi .

Decode Y1, . . . ,YK using only K ∗ of hi ’s by evaluating each at certain points.
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Lagrange Coded Computing
Encoding

Select any K distinct elements β1, . . . , βK from F, and find a polynomial u : F → V
of degree K − 1 such that u(βi ) = Xi for i ∈ [K ].
This can be accomplished by Lagrange interpolation polynomial

u(z) ≜
∑
j∈[K ]

Xj ·
∏

k∈[K ]\{j}

z − βk
βj − βk

(3)

Now, select N distinct elements α1, . . . , αN from F and encode the input variables
by letting X̃ = u(αi ) for i ∈ [N]

X̃i = gi (X ) = u(αi ) ≜
∑
j∈[K ]

Xj ·
∏

k∈[K ]\{j}

αi − βk
βj − βk

(4)
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Lagrange Coded Computing
Decoding

Each worker i computes Ỹi = f (X̃i ) = f (u(αi )) and sends Ỹi to the master.

This composition f (u(z)) is also a polynomial with degree ≤ (K − 1) deg f .

Now, any (K−1) deg f +1 workers return the evaluations at (K−1) deg f +1 points.
This gives a unique f (u(z)) which can be interpolated using Lagrange polynomials.

Then, the master evaluates it at βi for every i ∈ [K ] to obtain f (u(βi )) = f (Xi ),

Note that if, number of workers are small (N < K deg f − 1), K ∗ can be easily achieved
by replicating every Xi by atleast ⌊N/K⌋ times. Now, every set of N − ⌊N/K⌋ + 1
computation contains at least one copy of f (Xi ) for every i .

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 20 / 27



Lagrange Coded Computing
Decoding
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This composition f (u(z)) is also a polynomial with degree ≤ (K − 1) deg f .

Now, any (K−1) deg f +1 workers return the evaluations at (K−1) deg f +1 points.
This gives a unique f (u(z)) which can be interpolated using Lagrange polynomials.

Then, the master evaluates it at βi for every i ∈ [K ] to obtain f (u(βi )) = f (Xi ),

Note that if, number of workers are small (N < K deg f − 1), K ∗ can be easily achieved
by replicating every Xi by atleast ⌊N/K⌋ times. Now, every set of N − ⌊N/K⌋ + 1
computation contains at least one copy of f (Xi ) for every i .

Param, Anupam (IIT Bombay) Coded Computing Autumn 2021-22 20 / 27



Lagrange Coded Computing
Decoding
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Secure and Private Multiparty Computing
Overview

Worker 1

Worker 2

Worker #$
Worker #%

Worker &'

Worker &(

Worker )

dataset
*', … , *-

. possibly 
malicious nodes / possibly colluding nodes 

Coding of
the dataset

0*1
0*'

0*$

Master

Worker #'

. . . . . .

0*23

0*45

. . . . . .

6( 0*')

6( 0*$)

6( 0*1)

Worker 9'

Worker 9:

. . .

0*;<

= stragglers *?

?23

?25

Figure: Overview of Secure and Private Multiparty Computing4

4
J. S. Qian Yu, Netanel Raviv and A. S. Avestimehr, “Lagrange coded computing: Optimal design for resiliency, security and privacy,” 2018
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Secure and Private Multiparty Computing
Terminology

Resiliency (robustness against stragglers) In a S-resilient system, the master must
be able to obtain the correct values of Y1, . . . ,YK even if up to S workers delay/fail.

Security (robustness against adversaries) In a A-secure system, the master must be
able to obtain correct values of Y1, . . . ,YK even if up to A workers return arbitrarily
erroneous results.

Privacy (robustness against collusion) In a T-private system, the workers cannot
infer anything about the content of the dataset, even if up to T of them collude,
Formally, for every T ⊆ [N] of size at most T , we must have I (X ; X̃T ) = 0

The tuple (S ,A,T ) is achievable if there exists an encoding and decoding scheme that
can complete the computations in the presence of up to S stragglers, up to A adversarial
workers, whilst keeping the dataset private against sets of up to T colluding workers.
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Main Result

The below theorem characterizes the region for (S ,A,T ) that LCC achieves

Theorem

Given a number of workers N and a dataset X = (X1, . . . ,XK ), LCC provides an S-
resilient, A-secure, and T-private scheme for computing {f (Xi )}Ki=1 for any polynomial
f , as long as

(K + T − 1) deg f + S + 2A+ 1 ≤ N. (5)

Interesting Fact

One additional worker can increase its resiliency to stragglers by 1, or increase its robust-
ness to adversaries by 1/2, while maintaining the privacy constraint. Sounds familiar?
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Lagrange Coded Computing
Encoding

Select any K + T distinct elements β1, . . . , βK+T from F, and find a polynomial
u : F → V of degree K + T − 1 such that u(βi ) = Xi for i ∈ [K ] and u(βi ) = Zi

for i ∈ {K + 1, . . . ,K + T} where are Zi ’s are chosen randomly from V.

u(z) ≜
∑
j∈[K ]

Xj ·
∏

k∈[K+T ]\{j}

z − βk
βj − βk

+
K+T∑
j=K+1

Zj ·
∏

k∈[K+T ]\{j}

z − βk
βj − βk

(6)

Now, select N distinct elements α1, . . . , αN from F such that {αi}Ni=1∩{βj}Nj=1 = ∅
and encode the input variables by letting X̃ = u(αi ) for i ∈ [N]

X̃i = gi (X ) = u(αi ) = (X1, . . . ,XK ,ZK+1, . . . ,ZK+T )·Ui (U ∈ F(K+T )×N)
q ) (7)

Where Uij ≜
∏

l∈[K+T ]\{i}
αj−βl

βi−βl
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Lagrange Coded Computing
Decoding

Each worker i computes Ỹi = f (X̃i ) = f (u(αi ) and sends Ỹi to the master.

This composition f (u(z)) is also a polynomial with degree ≤ (K + T − 1) deg f .

The master obtains N−S evaluations of f (u(z)), at most A of which are incorrect.

The master can obtain all coefficients of f (u(z)) by applying Reed-Solomon decod-
ing as N ≥ (K + T − 1) deg(f ) + S + 2A+ 1

Then, the master evaluates it at βi for every i ∈ [K ] to obtain f (u(βi )) = f (Xi ),

Hence, we have shown that the above scheme is S-resilient and A-secure.
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Recent Works and Open Problems

Developing efficient and straggler resilient “master-less” systems.
▶ Current state of the art assumes availability of master
▶ All nodes are identical, and no single node may be able to store all the data or perform

all the encoding/decoding.

Beyond polynomial computations.
▶ Going beyond polynomial computations is a very important and challenging research
▶ Impacts application domains (eg. machine learning with non-linear threshold functions)

Application to blockchain systems
▶ Today’s blockchain designs suffer from a trilemma claiming that no blockchain system

can simultaneously achieve decentralization, security, and performance scalability.
▶ Coded computing can provide an effective approach for overcoming such barriers.
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