Practice Problems

Computer Programming and Utilization

Param Rathour

Practice Problems

Computer Programming and Utilization

Param Rathour
https://paramrathour.github.io/cs101

Last update: 2023-12-25 23:51:49+05:30

Abstract

Disclaimer These are optional problems. As these problems are pretty involving, my advice to you would be to first solve exercises given in slides, lab optional questions and get comfortable with the course content. I have created these problems such that you will learn something new from each problem. Each section builds on the next; so, try to solve the problems only using the topics mentioned in that section and previous sections. They will suffice to solve these problems. Don't forget to look at the starter code (it will be in blue) for each problem which takes care of input and output behaviours (and sometimes provides hints). I have also prepared model solutions for each problem, they are available on request. Some interesting solutions that students have sent to me are available here. Feel free to share your programs too at paramrathour3435@gmail.com. You can always find the latest version of this problem set at the webpage mentioned in title.

Acknowledgements

Many thanks to Numberphile, 3Blue1Brown, Mathologer, PBS Infinite Series, Veritasium and countless other YouTube channels for developing my love for mathematics and their Fun Videos further inspiring me to create these problems. Also thank you Wikipedia and The On-Line Encyclopedia of Integer Sequences for freely providing their vast resources and detailed information about concepts which helped me frame these problems. Many numbers, phrases, equations and graphics are directly taken from there and modified as per my wish. I would also like to thank Project Euler, CSES, Codeforces and many other online programming practice communities which motivated me to further pursue programming and create problems. I faced lots of $T_{E} X$ nical issues while setting up this document and I thank $T_{E} X$ - $A T_{E} X$ Stack Exchange community for their support and many thanks to $A T_{E} X D r a w$ for their stylish cover page. Thanks to the CS101 professors, my fellow TAs, tutees, and others for their valuable suggestions on improving these problems. And, lastly thanks to you, reader; These problems are the result of my hard work over the years. I hope they help you in some way or the other and you enjoy solving them :).

Simplecpp Graphics

Also we will be using Simplecpp for initial problem sets (till 8). Why? because Introductory Programming: Let Us Cut through the Clutter! The course book is An Introduction to Programming through C++ by Abhiram G. Ranade. Apart from $\mathrm{C}++$, Simplecpp graphics are an interesting approach to introductory programming. Check out Turtle Graphics - Wikipedia and Simplecpp Gallery for some fascinating examples. Graphics problems in this problem set are - Star Spiral, Peace, Modular Times Table, Regular Star Polygon, Hilbert Curve, Thue-Morse Sequence, Recaman's Sequence, Farey Sequence, Dragon Curve, Sierpiński Arrowhead Curve, Sierpiński Triangle and Barnsley's Fern.

Here are additional chapters of the book on Simplecpp graphics demonstrating its power.
(It is just a list, you are not expected to understand/study things, CS101 is for a reason :P)
Chapter 1 Turtle graphics
Chapter 5 Coordinate based graphics, shapes besides turtles
Chapter 15.2.3 Polygons
Chapter 19 Gravitational simulation
Chapter 20 Events, Frames, Snake game
Chapter 24.2 Layout of math formulae
Chapter 26 Composite class
Chapter 28 Airport simulation

- Carefully go through the problem statement
- Check your understanding of problem using solved examples and practice testcases
- Compose the programming approach on paper
- Consolidate your approach by verifying its correctness on testcases by doing dry runs
- Code it up (finally!)

Good Programming Practices

- Write documentation clearly explaining
- what the program does,
- how to use it,
- what quantities it takes as input, and
- what quantities it returns as output.
- Use appropriate variable/function names.
- Extensive internal comments explaining how the program works.
- Complete error handling with informative error messages.

For example, if $\mathrm{a}=\mathrm{b}=0$, then the $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ routine should return the error message " $\operatorname{gcd}(0,0)$ is undefined" instead of going into an infinite loop or returning a "division by zero" error.

Tips

- Some data types that you should keep in mind are:
- bool
- char
- short int, int, long int, long long int and their unsigned counterparts
- float, double, long double
- Choose appropriate variable data types according to constraints. Example, if a variable is always an integer then it should be assigned an int data type.
- Whenever possible prefer integer data types over floating point data types which aren't accurate due to floating point errors. Some problems that look like they will need floating point numbers but are solvable using integers are Triangle Types, Friendly Pair and Newton Interpolation.
- Use type conversion to your advantage to
- make your program unambiguous.
- compute expressions containing variables of different data types.
- Find more tips at https://paramrathour.github.io/blog/cs101-tips

Get comfortable with Dry Runs

The most important step in debugging

- Select a testcase
- Manually go through the code to trace the value of variables
- Check if the values of variables matches with their expected values
- If they do not match for any variable at any time then your program is incorrect, consider debugging/rewriting it
- If they match for all variables at all times, Hurray! your program is correct for the current testcases!
- Now repeat the procedure for a different testcase :)

Contents

1 Prodigal Patterns 6
1.1 Star Spiral 6
1.2 Peace 7
1.3 Butterfly 8
1.4 Alphabetical Floyd's Triangle 9
1.5 Bernoulli's Triangle 10
1.6 Modular Times Table 11
2 Expression Obsession 12
2.1 Harmonic Number 12
2.2 Wallis Product 13
2.3 Tetration 14
2.4 Ramanujan's Nested Radical 15
2.5 Simple Continued Fractions 16
2.6 Ramanujan's $\sqrt{\frac{\pi e}{2}}$ Formula 17
2.7 Viète's π Formula 18
2.8 Hölder Mean 19
2.9 Shoelace Formula 20
2.10 Simpson's Rule 21
3 Traditional Conditionals 22
3.1 Triangle Types 22
3.1.1 By Side 22
3.1.2 By Angle 22
3.2 Clock Angle 23
3.3 Fleur Delacour 24
3.4 Doomsday Algorithm 25
4 Iteration Domination 26
4.1 Pisano Period 26
4.2 Palindromic Number 27
4.3 Kempner Series 28
4.4 Base -2 29
4.5 Base Conversion 30
5 Function Admiration 31
5.1 Collatz Conjecture 31
5.2 Friendly Pair 32
5.3 Gauss Circle Problem 33
5.4 Euler's Totient Function 34
5.5 Regular Star Polygon 35
6 Recursion Salvation 36
6.1 Ackermann Function 36
6.2 Horner's Method 37
6.3 Modular Exponentiation 38
6.4 Partitions 39
6.5 Hereditary Representation 40
7 Paths Paranoia (More Recursion?) 41
7.1 Staircase Walk 41
7.2 Dyck Path 42
7.3 Delannoy Number 43
7.4 Schröder Number 44
7.5 Motzkin Number 45
7.6 Hilbert Curve 46
8 Sequence Eminence (Intro to Arrays) 47
8.1 Josephus Problem 47
8.2 Van Eck's Sequence 48
8.3 Look-And-Say Sequence 49
8.4 Thue-Morse Sequence 50
8.5 Recaman's Sequence 51
8.6 Farey Sequence 52
9 Array Leeway (2-D Arrays) 53
9.1 Case Converter 53
9.2 Spiral Grid 54
9.3 Minesweeper 55
9.4 Gray Code 56
10 Array Powerplay (More Arrays or Recursion?) 57
10.1 Determinant of a Matrix 57
10.2 Tower of Hanoi 58
10.3 Quicksort 59
11 Programming Expositions 60
11.1 Newton Interpolation 60
11.2 ISBN 61
11.3 Vigenére Cipher 62
11.4 Linear Feedback Shift Register 64
12 Fractal Fun 65
12.1 L-Systems 65
12.1.1 Dragon Curve 65
12.1.2 Sierpiński Arrowhead Curve 65
12.2 Chaos Game (Iterated Function Systems) 66
12.2.1 Sierpiński Triangle 66
12.2.2 Barnsley's Fern 66

§1. Prodigal Patterns

Topics. turtleSim (turtle simulator) and its features forward, right, left, penUp, penDown repeat statement, variables and their data types (int, char), typecasting.

1.1. Star Spiral

Problem Statement:

Draw the following Star Spiral.

Figure 1: A Star Spiral of 30 sides

Fun Video. Freaky Dot Patterns - Numberphile

1.2. Peace

Problem Statement:

Draw the outline of the Proportionl Peace Sign according to measurements as shown in 2a.

Figure 2: Peace Sign

The output image will look like 2 b .
Fun Video. Carl Sagan's Pale Blue Dot - carlsagandotcom
Cosmos: Possible Worlds (Carl Sagan's Monologue) - Evil Dead

1.3. Butterfly

Problem Statement:

Print the Butterfly pattern for a general n. See Starter code (below) for more details.

```
Starter Code
Input Format
t
(number of test cases, an integer)
n}\mp@subsup{n}{1}{}\mp@subsup{n}{2}{\ldots
Output Format Butterfly pattern

\section*{Constraints}
```

$1 \leq n_{i} \leq 10$

```

\section*{Sample Input \\ 5 \\ 12345}

\section*{Sample Output}


Fun Video. Chaos: The Science of the Butterfly Effect - Veritasium

\subsection*{1.4. Alphabetical Floyd's Triangle}

The alphabets are filled in alphabetical order (' \(A\) ' to ' \(Z\) ') and a newline is started after printing \(n\) alphabets on the \(n^{\text {th }}\) line. After ' \(Z\) ', the alphabets "wrap around" to ' \(A\) '.

\section*{Problem Statement:}

Print the left-aligned Alphabetical Floyd's Triangle for all given \(n\). See Starter code (below) for more details.

\section*{Starter Code}

Input Format
\(t\)
(number of test cases, an integer)
\(n_{1} n_{2} \ldots n_{t}\) ( \(t\) space seperated integers for each testcase)

\section*{Output Format}

Alphabetical Floyd's Triangle
(left-aligned, each test case on a newline)

\section*{Constraints}
\(1 \leq n_{i} \leq 20\)

\section*{Sample Input \\ 5}

123517
```

Sample Output
A
A
B C
A
B C
D E F
A
BC
D E F
GHIJ
KLM N O
A
B C
D E F
G H I J
K L M N O
P Q R S T U
VW XYZAB
CDEFGHIJ
KLMNOPQRS
T U V W X Y Z A B C
DEFGHIJKLMN
O PQRSTUVWXYZ
ABCDEFGHIJKLM
N OPQRSTUVWXYZA
BCDEFGHIJKLMNOP
QRSTUVWXYZABCDEF
GHIJKLMNOPQRSTUVW

```

\subsection*{1.5. Bernoulli's Triangle}

You might have heard about Pascal's Triangle. The \(k^{\text {th }}\) element of row \(n\) of Bernoulli's Triangle is obtained by as shown in 3 summing all elements of the row \(n\) (row 0 is the first row) until the \(k^{\text {th }}\) element (partial sums).
\(1-\mathbf{1}\)
\(1-\mathbf{1}+1-\mathbf{2}\)
\(1-\mathbf{1}+2-\mathbf{3}+1-\mathbf{4}\)
\(1-\mathbf{1}+3-\mathbf{4}+3-\mathbf{7}+1-\mathbf{8}\)
\(1-\mathbf{1}+\mathbf{4}+6-\mathbf{1 1}+4-\mathbf{1 5}+1-\mathbf{1 6}\)
\(1-\mathbf{1}+5-\mathbf{6}+10-\mathbf{1 6}+10-\mathbf{2 6}+5-\mathbf{3 1}+1-\mathbf{3 2}\)
\(1-\mathbf{1}+\mathbf{6}-15-\mathbf{2 2}+20-\mathbf{4 2}+15-\mathbf{5 7}+6-\mathbf{6 3}+1-\mathbf{6 4}\)

Figure 3: Bernoulli's triangle from Pascal's triangle (Image by Cmglee licensed under CC BY-SA 4.0)

\section*{Problem Statement:}

Print the left-aligned Bernoulli's Triangle for all given \(n\). See Starter code (below) for more details.

\section*{Starter Code}
```

Input Format

```
\(t\)
(number of test cases, an integer)
\(n_{1} n_{2} \ldots n_{t}\)
( \(t\) space seperated integers for each testcase)

\section*{Output Format}

Bernoulli's Triangle
(left-aligned, each test case on a newline)

\section*{Constraints}
\(0 \leq n_{i} \leq 20\)
```

Sample Input
4
01210

```

\section*{Sample Output}
```

1
1
12
1
12
134
1
12
134
1478
15111516
1616263132
172242576364
18296499120127128
193793163219247255256
11046130256382466502511512
11156176386638848968101310231024

```

Fun Video. Pascal's Triangle - Numberphile
What You Don't Know About Pascal's Triangle - Tipping Point Math

\subsection*{1.6. Modular Times Table}

Procedure to construct the Modular Times Table:
- Draw a circle which fits the entire "drawing canvas"
- Imagine you have \(n\) equally-spaced points on the circumference of this circle. Number them 0 to \(n-1\) anti-clockwise with 0 being the leftmost point.
- For each \(i \in\{0,1,2, \ldots, n-1\}\) connect the points representing \(i\) with the point for \((m \cdot i) \% n\) with a straight line.

An example is shown in 4. Don't draw the numbers. They are just to visualise the construction.


Figure 4: Times Table for \((n, m)=(8,2)\)

\section*{Problem Statement:}

For a given ( \(n, m\) ) pair ( \(n>m\) ), construct the Modular Times Table.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Starter Code} \\
\hline Input Format
\[
n \quad m
\] & (two numbers) \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Output Format \\
The constructed Modular Times Table
\end{tabular}} \\
\hline \[
\begin{aligned}
& \text { Constraints } \\
& 3 \leq n \leq 500 \\
& 1<m<n
\end{aligned}
\] & \begin{tabular}{l}
(an integer) \\
(a double, first try to solve the problem for an integer \(m\) )
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Sample Input See 5} \\
\hline Sample Output See 5 & \\
\hline
\end{tabular}

\section*{The output Modular Times Tables}


Figure 5: Modular Times Table

Fun Video. Times Tables, Mandelbrot and the Heart of Mathematics
Modular Times Tables

\section*{§2. Expression Obsession}

Topics. repeat statement, variables and their data types (int, double), mathematical functions (min, max, sqrt, pow, log, sine...).

\subsection*{2.1. Harmonic Number}

The \(n\)-th Harmonic Number \(\left(H_{n}\right)\) is the sum of the reciprocals of the first n natural numbers.
\[
\begin{equation*}
H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}=\sum_{i=1}^{n} \frac{1}{i} \tag{1}
\end{equation*}
\]

Fun Fact. The Harmonic series diverges; i.e., \(H_{n} \rightarrow \infty\) as \(n \rightarrow \infty\).

\section*{Problem Statement:}

Calculate \(H_{n}\) for all test cases accurate till 10 decimal places. See Starter code (below) for more details.
```

Starter Code
Input Format
t
(number of test cases, an integer)
n
(t space seperated integers for each testcase)
Output Format
H
(each test case on a newline, accurate till 10 decimal places)

```

\section*{Constraints}
```

$1 \leq n_{i} \leq 10^{6}$

```
```

Sample Input

```
Sample Input
11
11
12351020 30501001000 1000000
```

12351020 30501001000 1000000

```

\section*{Sample Output}
```

1.0000000000
1.5000000000
1.8333333333
2.2833333333
2.9289682540
3.5977396571
3.9949871309
4.4992053383
5.1873775176
7.4854708606
14.3927267229

```

Fun Video. The Harmonic Series - Tipping Point Math

\subsection*{2.2. Wallis Product}
\(\pi / 2\) is given by below infinite product formula. It is the ratio of product of even squares and odd squares
\[
\begin{equation*}
\frac{\pi}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots=\prod_{i=1}^{\infty}\left(\frac{2 i}{2 i-1} \cdot \frac{2 i}{2 i+1}\right) \tag{2}
\end{equation*}
\]

Let's define \(\pi_{n}\) as \(n\)-th iteration of this infinite product as below
\[
\frac{\pi_{n}}{2}=\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots \frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}=\prod_{i=1}^{n}\left(\frac{2 i}{2 i-1} \cdot \frac{2 i}{2 i+1}\right)
\]

\section*{Problem Statement:}

Calculate \(\pi_{n}\) for all test cases accurate till 10 decimal places. See Starter code (below) for more details.
```

Starter Code
Input Format
t
(number of test cases, an integer)
n
(t space seperated integers for each testcase)

```

\section*{Output Format}
```

$\pi_{n_{i}}$
(each test case on a newline, accurate till 10 decimal places)

```

\section*{Constraints}
```

$1 \leq n_{i} \leq 10^{6}$

```
```

Sample Input

```
Sample Input
11
11
12351020 305010010001000000
12351020 305010010001000000
Sample Output
2.6666666667
2.8444444444
2.9257142857
3.0021759546
3.0677038066
3.1035169615
3.1159482859
3.1260789002
3.1337874906
3.1408077460
3.1415918682
```

Fun Video. The Wallis product for pi, proved geometrically - 3Blue1Brown
The World's Most Beautiful Formula For Pi - BriTheMathGuy

2.3. Tetration

Problem 2.1 is about repeated additions whereas 2.2 is about repeated multiplication. Guess what's this problem about. Yes! It's repeated exponentiation. Tetration, the next hyperoperation after exponentiation defined as:

$$
\begin{equation*}
{ }^{n} a=\underbrace{a^{a^{\cdot a}}}_{n} \quad \text { repeated exponentiation } \tag{3}
\end{equation*}
$$

Problem Statement:

Calculate ${ }^{n} a$ for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

Starter Code

Input Format
t
$a_{1} n_{1} \quad a_{2} n_{2} \quad \ldots \quad a_{t} n_{t}$
(number of test cases, an integer)
(t space seperated pairs for each testcase)

Output Format

${ }^{n} a$
(each test case on a newline, accurate till 10 decimal places)

Constraints

$0.05 \leq a_{i} \leq 3$
$1 \leq n_{i} \leq 1000$

Sample Input

10
$11 \begin{array}{llllllllll}12 & 21 & 22 & 23 & 32 & 33 & 1.41421356237 & 20 & 0.065988035841000 & 1.44466786101\end{array} 1000$

```
Sample Output
1.0000000000
1.0000000000
2.0000000000
4.0000000000
16.0000000000
27.0000000000
7625597484987.0000000000
1.9995856229
0.3968311347
2.7128728643
```

Fun Video. Tetration: The operation you were (probably) never taught - Taylor Series
"Prove" 4 = 2 Using Infinite Exponents. Can You Spot The Mistake? - Mind Your Decisions

2.4. Ramanujan's Nested Radical

$$
\begin{equation*}
r=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+\cdots}}}}=\lim _{n \rightarrow \infty} \sqrt{1+2 \sqrt{1+3 \sqrt{\cdots \sqrt{1+n}}}} \tag{4}
\end{equation*}
$$

Let's define r_{n} as n-th iteration of this infinite nested radical as below

$$
r_{n}=\sqrt{1+2 \sqrt{1+3 \sqrt{\cdots \sqrt{1+n}}}}
$$

Problem Statement:

Calculate r_{n} for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

```
Starter Code
Input Format
t}\mathrm{ (number of test cases, an integer)
n
```

Output Format
$r_{n_{i}}$ (each test case on a newline, accurate till 10 decimal places)

Constraints

$2 \leq n_{i} \leq 100$

Sample Input

8
23510203050100

Sample Output

1.7320508076
2.2360679775
2.7550532613
2.9899203606
2.9999878806
2.9999999868
3.0000000000
3.0000000000

Fun Video. Ramanujan: Knowing The Man Who Knew Infinity - singingbanana
Ramanujan's infinite root and its crazy cousins - Mathologer

2.5. Simple Continued Fractions

A (finite) simple continued fraction of a rational number r is defined using $n+1$ coefficients $=\left[a_{0} ; a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}\right]$. They can be expressed in Gauss' Kettenbruch notation as follows

$$
\begin{equation*}
r=a_{0}+\stackrel{K}{i=1}_{n} \frac{1}{a_{n}} \triangleq a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{n}}}}} \tag{5}
\end{equation*}
$$

Problem Statement:

Express r as a quotient p / q where p, q are integers and $q \neq 0$. See Starter code (below) for more details.

```
Starter Code
Input Format
t (number of test cases, an integer)
n
```


Output Format

$p_{n_{i}} / q_{n_{i}} \quad$ (each test case on a newline, where $r_{n_{i}}=p_{n_{i}} / q_{n_{i}}$ (in irreducible form))

Constraints

$0 \leq n_{i} \leq 50$
a_{0} is an integer whereas $a_{1}, a_{2}, \ldots, a_{n_{i}-1}, a_{n_{i}}$ are positive integers
$a_{0}, a_{1}, a_{2}, \ldots, a_{n_{i}-1}, a_{n_{i}}$ are such that $-2,147,483,648 \leq p_{n_{i}}, q_{n_{i}} \leq 2,147,483,647 \quad$ (C++'s int range)

Sample Input

11
00
110
111
173
8111111111
$101111111112-2$
311573
913341212110
1214131211129211573
2211141112111011811611411212
451110

```
Sample Output
0/1
1/1
2/1
22/7
55/34
-233/144
355/113
3035/5258
80143857/25510582
848456353/312129649
1134903170/1836311903
```

Fun Video. Infinite fractions and the most irrational number - Mathologer

2.6. Ramanujan's $\sqrt{\frac{\pi e}{2}}$ Formula

This problem is a fusion of 2.5 and 2.1. It is recommended to solve them before proceeding to this problem.

$$
\begin{equation*}
\sqrt{\frac{\pi e}{2}}=\frac{1}{1+\frac{1}{1+\frac{2}{1+\frac{3}{1+\frac{4}{1+.}}}}}+\left\{1+\frac{1}{1 \cdot 3}+\frac{1}{1 \cdot 3 \cdot 5}+\frac{1}{1 \cdot 3 \cdot 5 \cdot 7}+\frac{1}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9}+\cdots\right\} \tag{6}
\end{equation*}
$$

Let's define c_{n} as n-th convergent of this infinite continued fraction and sum as below

$$
c_{n}=\bigvee_{i=0}^{n} \frac{a_{i}}{1}+\sum_{i=0}^{n} \frac{1}{(2 n+1)!!} \quad \text { where } \quad a_{i}=\left\{\begin{array}{ll}
1 & i=0 \\
i & i>0
\end{array} \quad \Rightarrow \quad \sqrt{\frac{\pi e}{2}}=\lim _{n \rightarrow \infty} c_{n}\right.
$$

Note. $n!!\neq(n!)!, n!!$ is double factorial of n.

Problem Statement:

Calculate c_{n} for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

Starter Code		
Input Format	(number of test cases, an integer) (t space seperated integers for each testcase)	
t		
$n_{1} n_{2} \ldots . n_{t}$		
Output Form	(each test case on a newline, accurate till 10 decimal places)	
$c_{n_{i}}$		
Constraints$0 \leq n_{i} \leq 10^{6}$		
Sample Input$12$$012351020305010010001000000$		
Sample Outpu		
2.0000000000		
1.8333333333		
2.1500000000		
2.0095238095		
2.0422571580		
2.0709281786		
2.0667462769		
2.0664199465		
2.0663680635		
2.0663656843		
2.0663656771		
2.0663656771		

Fun Video. 7 factorials you probably didn't know - blackpenredpen
The Man Who Knew Infinity - Tipping Point Math

2.7. Viète's π Formula

This problem is a fusion of 2.2 and 2.4. It is recommended to solve them before proceeding to this problem.

$$
\begin{equation*}
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots=\prod_{i=1}^{\infty} \frac{\overbrace{\sqrt{2+\sqrt{\cdots \sqrt{2+\sqrt{2+\sqrt{2+0}}}}}}^{i 2^{2 ' s}}}{2} \tag{7}
\end{equation*}
$$

Let's define π_{n} as n-th iteration of this infinite nested radical as below

$$
\frac{2}{\pi_{n}}=\prod_{i=1}^{n} \frac{\overbrace{\sqrt{2+\sqrt{\cdots \sqrt{2+\sqrt{2+\sqrt{2+0}}}}}}^{2}}{\overbrace{}^{2 \text { 2's }}}
$$

Problem Statement:

Calculate π_{n} for all test cases accurate till 15 decimal places. See Starter code (below) for more details.

Fun Video. The Discovery That Transformed Pi - Veritasium

2.8. Hölder Mean

Hölder mean is a generalized notion for aggregating sets of numbers.
For any non-zero real number p and positive reals $x_{1}, x_{2}, \ldots, x_{n}$, it is defined as

$$
\begin{equation*}
M_{p}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}^{p}\right)^{\frac{1}{p}} \tag{8}
\end{equation*}
$$

Its special cases are

$$
\begin{array}{lllr}
p=-\infty & \rightarrow M_{-\infty}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{p \rightarrow-\infty} M_{p}\left(x_{1}, \ldots, x_{n}\right)=\min \left\{x_{1}, \ldots, x_{n}\right\} & \quad \text { (minimum) } \\
p=-1 & \rightarrow M_{-1}\left(x_{1}, \ldots, x_{n}\right) & =\frac{n}{\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}} \\
p=0 & \rightarrow M_{0}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{p \rightarrow 0} M_{p}\left(x_{1}, \ldots, x_{n}\right)=\sqrt[n]{x_{1} \cdots x_{n}} & \text { (harmonic mean) } \\
p=1 & \rightarrow M_{1}\left(x_{1}, \ldots, x_{n}\right) & =\frac{x_{1}+\cdots+x_{n}}{n} \\
p=2 & \rightarrow M_{2}\left(x_{1}, \ldots, x_{n}\right) & =\sqrt{\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{n}} \\
p=3 & \rightarrow M_{3}\left(x_{1}, \ldots, x_{n}\right) & =\sqrt[3]{\frac{x_{1}^{3}+\cdots+x_{n}^{3}}{n}} \\
p=+\infty & \rightarrow M_{+\infty}\left(x_{1}, \ldots, x_{n}\right) & =\lim _{p \rightarrow \infty} M_{p}\left(x_{1}, \ldots, x_{n}\right)=\max \left\{x_{1}, \ldots, x_{n}\right\} & \text { (geometric mean) } \\
\text { (root mean square) }
\end{array}
$$

Problem Statement:

Calculate $M_{p}\left(x_{1}, \ldots, x_{n}\right)$ for all special cases $(p=-\infty,-1,0,1,2,3, \infty)$ and accurate till 5 decimal places.

Starter Code

Input Format

t
(number of test cases, an integer)
$n_{i} \quad x_{1} x_{2} \ldots x_{n_{i}-1} x_{n_{i}}$ ($n_{i}+1$ space seperated numbers for each testcase)

Output Format

$M_{p}\left(x_{1}, \ldots, x_{n}\right)$ for $p=\{-\infty,-1,0,1,2,3, \infty\}$ (each test case on a newline, accurate till 5 decimal places))

Constraints

$1 \leq n_{i} \leq 50$	
$0<x_{i} \leq 100$	(an integer)
Also assume that the calculations are always within the range of double	(a double)

Also assume that the calculations are always within the range of double

```
Sample Input
4
2 11
5 12345
13 1 3610152128 36455566 78 91
33 1 3627132012211122102392482543624263411842174316441545144679
```


Sample Output

1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
1.00000	2.18978	2.60517	3.00000	3.31662	3.55689	5.00000
1.00000	7.00000	19.67642	35.00000	45.28797	52.26138	91.00000
1.00000	9.31362	17.70339	25.66667	32.17424	37.42452	79.00000

More Test cases

Input and Output files

2.9. Shoelace Formula

Shoelace Formula determines the area of a simple polygon whose vertices are given by Cartesian coordinates.

$$
A=\frac{\left|\begin{array}{llllll}
x_{1} & x_{2} & x_{3} & \cdots & x_{n} & x_{1} \tag{10}\\
y_{1} & y_{2} & y_{3} & \cdots & y_{n} & y_{1}
\end{array}\right|}{2}
$$

which can be simplfied as

$$
A=\frac{\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|+\left|\begin{array}{ll}
x_{2} & x_{3} \\
y_{2} & y_{3}
\end{array}\right|+\cdots+\left|\begin{array}{ll}
x_{n} & x_{1} \\
y_{n} & y_{1}
\end{array}\right|}{2} \text { where }\left|\begin{array}{ll}
x_{i} & x_{j} \\
y_{i} & y_{j}
\end{array}\right|=x_{i} \cdot y_{j}-x_{j} \cdot y_{i}
$$

Problem Statement:

Calculate the area of a given n-sided polygon for all test cases accurate till 1 decimal place.

Starter Code

Input Format

$\begin{array}{llllll}t & & & & x_{n} & y_{n} \\ n_{i} & x_{1} y_{1} & x_{2} & y_{2} & \cdots & \quad \text { (number of test cases, an integer) }\end{array}$

Output Format
 A_{i}

$$
\text { (each test case on a newline, accurate till } 1 \text { decimal places) }
$$

Constraints

$3 \leq n_{i} \leq 1000$
$-10^{5} \leq x_{i}, y_{i} \leq 10^{5}$
The given polygon is simple.

Sample Input

6
30102347
$3 \quad 11 \quad 59 \quad 35$
$\begin{array}{lllll}3 & 34 & 11 & 41\end{array}$
$4 \quad-24 \begin{array}{lllll}4 & -21 & 3-3 & 4\end{array}$
$8 \quad 458695 \quad 621483 \quad 877469 \quad 1035636$
$10 \quad 44386147050675443291044695248510365951101721104595494710097121095$

Sample Output

2.0
0.0
4.5
28.5
255931.0
325573.5

More Test cases

Input and Output files
Fun Video. Gauss's magic shoelace area formula and its calculus companion

2.10. Simpson's Rule

Simpson's Rule is a method in numerical integration (approximating definite integrals).
It approximates the area of $f(x)$ in the interval $[a, b]$ by area of parabola passing through $a, \frac{a+b}{2}, b$. as shown in 6 .

Figure 6: Approximating $f(x)$ by a parabola $P(x)$. (Image by Popletibus licensed under CC BY-SA 4.0)

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{b-a}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] \tag{11}
\end{equation*}
$$

If 11 is applied to n equally spaced subdivisions in $[a, b]$, we get the composite Simpson's rule 12 .

$$
\begin{equation*}
\int_{a}^{b} f(x) d x \approx \frac{\Delta x}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \tag{12}
\end{equation*}
$$

where each of the $n+1$ ordinates is given by $x_{i}=a+i \Delta x$ for $i=0,1, \ldots, n$ and $\Delta x=\frac{b-a}{n}$
Note. Simpson's rule can only be applied when an odd number of ordinates is chosen.

Problem Statement:

$$
\begin{equation*}
\pi=\frac{22}{7}-\int_{0}^{1} \frac{x^{4}(1-x)^{4}}{1+x^{2}} d x \tag{13}
\end{equation*}
$$

Calculate π_{n} (approximate 13 using n ordinates) for all test cases (accurate till 15 decimal places).

Starter Code

```
Input Format
t (number of test cases, an integer)
n

\section*{Output Format}
\(\pi_{n_{i}}\)
(each test case on a newline, accurate till 15 decimal places)

\section*{Constraints}
\(0<n_{i}<500\) and \(n_{i}\) is odd

\section*{Sample Input}

10
3571115315799163441

\section*{Sample Output}
3.140773809523810
3.141684884891457
3.141601987350571
3.141593090129691
3.141592711563659
3.141592654188570
3.141592653603947
3.141592653590286
3.141592653589817
3.141592653589793

\section*{§3. Traditional Conditionals}

Topics. if else statement, loop contol statements (break, continue), more data types (bool, char) and, logical NOT, AND, OR operators (!, \&\&, || respectively) and previous sections.

\subsection*{3.1. Triangle Types}

Triangles can be classified using sides and angles as follows:

\subsection*{3.1.1 By Side}

Scalene All sides different
Isosceles Any two sides equal
Equilateral All sides equal

\subsection*{3.1.2 By Angle}

Acute All angles \(<90^{\circ}\)
Right One angle \(=90^{\circ}\)
Obtuse One angle \(>90^{\circ}\)

\section*{Problem Statement:}

Given the three sides of the triangle \(a, b, c\), output the type of triangle by side and angle. Also check the validity of given sides i.e., output "NOT A TRIANGLE" if the given sides does not form a triangle.

\section*{Starter Code}

\section*{Input Format}
\(t\)
(number of test cases, an integer)
\(a_{i} b_{i} c_{i}\) (three space seperated integers for each testcase)

\section*{Output Format}

Type by side \& Type by angle
(each test case on a newline)

\section*{Constraints}
\(1 \leq a, b, c \leq 100\)

\section*{Sample Input}

7
123
342
534
456
332
533
333

\section*{Sample Output}

NOT A TRIANGLE
Scalene \& Obtuse
Scalene \& Right
Scalene \& Acute
Isosceles \& Acute
Isosceles \& Obtuse
Equilateral \& Acute

\subsection*{3.2. Clock Angle}

\section*{Problem Statement:}

Determine the pairwise angle between the hour, minute and second hand of a 24 -hour clock at given time.
Let
- \(\angle_{H M}\) denote angle between hour hand and minute hand.
- \(\angle_{H S}\) denote angle between hour hand and second hand.
- \(\angle_{M S}\) denote angle between minute hand and second hand.

Note. Calculate the convex angle between pair of hands i.e., \(0 \leq \angle_{i j} \leq 180\).

\section*{Starter Code}

\section*{Input Format}
\(t\)
Hours:Minutes:Seconds
(number of test cases, an integer)
(three colon seperated integers for each testcase)

\section*{Output Format}
\(\angle_{H M} \quad \angle_{H S} \quad \angle_{M S}\) (three space seperated angles (in degrees, accurate till 4 decimal places)) on a newline

\section*{Constraints}

Given time is a valid; i.e., \(0 \leq\) Hours \(\leq 23,0 \leq\) Minutes \(\leq 59,0 \leq\) Seconds \(\leq 59\)

\section*{Sample Input}

12
00:00:00
03:00:00
21:45:00
10:10:00
03:16:36
09:49:09
19:38:18
05:07:11
11:07:05
17:19:23
23:19:17
23:59:59

\section*{Sample Output}
\begin{tabular}{lll} 
0.0000 & 0.0000 & 0.0000 \\
90.0000 & 90.0000 & 0.0000 \\
22.5000 & 67.5000 & 90.0000 \\
115.0000 & 55.0000 & 60.0000 \\
1.3000 & 117.7000 & 116.4000 \\
0.3250 & 119.4250 & 119.1000 \\
0.6500 & 121.1500 & 121.8000 \\
110.4917 & 87.5917 & 22.9000 \\
68.9583 & 56.4583 & 12.5000 \\
43.3917 & 21.6917 & 21.7000 \\
136.0583 & 122.3583 & 13.7000 \\
0.0917 & 5.9917 & 5.9000
\end{tabular}

\section*{More Test cases}

Input and Output files

\subsection*{3.3. Fleur Delacour}

Fleur Delacour has an interesting flower. She is also very busy, so she forgets to water the flower sometimes. The flower grows as follows:
- If the flower is watered in the \(i\)-th day, it grows by 1 unit.
- If the flower is watered in the \(i\)-th and in the \((i-1)\)-th day \((i>1)\), then it grows by 5 units instead of 1 .
- If the flower is not watered in the \(i\)-th day, it does not grow.
- If the flower isn't watered for two days in a row, it dies.

\section*{Problem Statement:}

Calculate the flower's height after \(n\) days given information whether Fleur has watered the flower or not for \(n\) successive days. Take the flower's initial height as 1 unit.

\section*{Starter Code}
```

Input Format
t
(number of test cases, an integer)
ni

```

\section*{Output Format}

The flower's height after \(n_{i}\) days. If the flower dies, output -1 (each test case on a newline)

\section*{Constraints}
\(1 \leq n_{i} \leq 100\)
\(a_{i}= \begin{cases}1 & \text { if Fleur waters the flower } \\ 0 & \text { if Fleur does not water the flower }\end{cases}\)
```

Sample Input
9
0
0
10
101
011
10100
510101
5 10110
10 11111111111

```

\section*{Sample Output}

1
-1
2
3
7
-1
4
8
47

\section*{More Test cases}

Input and Output files

Note. Verify your program on even more testcases from here.

\subsection*{3.4. Doomsday Algorithm}

The Doomsday Algorithm is a method for determining the day of the week for a given date. It takes advantage of some easy-to-remember-dates called Doomsdates falling on the same day called Doomsdays for a given year.
Eg., 3/1 (4/1 leap years), Last Day of Feb, 14/3 (Pi Day), 4/4, 6/6, 8/8, 10/10, 12/12, 9/5, 5/9, 11/7, 7/11.
Watch the Fun Video or go through the Wikipedia Article to understand the approach. In short the steps are:
- Find the anchor day for the century.
- Calculate the anchor day for the year (according to the century).
- Select the date (Doomsdate) of the given month that falls on doomsday (according to the year).
- Count days between the Doomsdate and given date which gives the answer.

\section*{Problem Statement:}

Write a function that calculates the day of the week for any particular date in the past or future.
Consider Gregorian calendar (AD)


Fun Video. The Doomsday Algorithm - Numberphile

\section*{§4. Iteration Domination}

Topics. for, while \& do while loops and previous sections.

\subsection*{4.1. Pisano Period}

The Fibonacci numbers are the numbers in the integer sequence defined by the following recurrence relation
\[
\begin{align*}
& F_{0}=0 \\
& F_{1}=1  \tag{14}\\
& F_{n}=F_{n-1}+F_{n-2} \quad n \in \mathbb{Z} \quad \text { (Yes! They can be extended to negative numbers) }
\end{align*}
\]

For any integer \(n\), the sequence of Fibonacci numbers \(F_{i} \% n\) is periodic
The Pisano period, denoted \(\pi(n)\), is the length of the period of this sequence.
For example, the sequence of Fibonacci numbers modulo 3 begins:
\[
0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0, \ldots(\mathrm{~A} 082115)
\]

This sequence has period 8 , so \(\pi(3)=8\).
Basically, the remainders repeat when these numbers are divided by \(n\). You have to find this period.

\section*{Problem Statement:}

Find Pisano period of \(t\) numbers \(n_{1}, n_{2}, \ldots, n_{t}\)


Fun Video. Fibonacci Mystery - Numberphile

\subsection*{4.2. Palindromic Number}

A non-negative integer is a Palindromic number if it remains the same when it's digits are reversed.

\section*{Problem Statement:}

Determine whether the given integer is a Palindrome for all test cases.


Fun Video. Why 02/02/2020 is the most palindromic date ever. - Stand-up Maths
Every Number is the Sum of Three Palindromes - Numberphile

\subsection*{4.3. Kempner Series}

Kempner series is Harmonic series where all terms whose denominator contains 9 are excluded.
\[
K_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{8}+\frac{1}{10}+\cdots+\frac{1}{n}=\sum_{i=1}^{n} c_{i} \frac{1}{i} \text { where } c_{i}= \begin{cases}0 & \text { if } i \prime \text { 's decimal expansion contains a } 9  \tag{15}\\ 1 & \text { else }\end{cases}
\]

Fun Fact. Unlike Harmonic series, the Kempner series converges to around 22.92.
This is because most large integers contain a 9, hence they will be excluded from the sum.

\section*{Problem Statement:}

Calculate \(K_{n}\) for all test cases accurate till 10 decimal places.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Starter Code} \\
\hline Input Format & \multirow[b]{3}{*}{(number of test cases, an integer) ( \(t\) space seperated integers for each testcase)} \\
\hline \(t\) & \\
\hline \(n_{1} n_{2} \ldots . n_{t}\) & \\
\hline Output Forma & \multirow[b]{2}{*}{(each test case on a newline, accurate till 10 decimal places)} \\
\hline \(K_{n_{i}}\) & \\
\hline \multicolumn{2}{|l|}{Constraints} \\
\hline \(1 \leq n_{i} \leq 10^{6}\) & \\
\hline \multicolumn{2}{|l|}{Sample Input} \\
\hline \multicolumn{2}{|l|}{11} \\
\hline \multicolumn{2}{|l|}{12351020305010010001000000} \\
\hline \multicolumn{2}{|l|}{Sample Output} \\
\hline \multicolumn{2}{|l|}{1.0000000000} \\
\hline \multicolumn{2}{|l|}{1.5000000000} \\
\hline \multicolumn{2}{|l|}{1.8333333333} \\
\hline \multicolumn{2}{|l|}{2.2833333333} \\
\hline \multicolumn{2}{|l|}{2.8178571429} \\
\hline \multicolumn{2}{|l|}{3.4339969671} \\
\hline \multicolumn{2}{|l|}{3.7967616822} \\
\hline \multicolumn{2}{|l|}{4.2549307007} \\
\hline \multicolumn{2}{|l|}{4.7818487651} \\
\hline 6.5907201903 & \\
\hline 11.0156518499 & \\
\hline
\end{tabular}

Fun Video. 3 is everywhere - Numberphile

\subsection*{4.4. Base -2}

By using -2 as the base, both positive and negative integers can be expressed without an explicit sign or other irregularity. Just like positive integral bases, any base -2 number can be represented as follows:
\[
\begin{equation*}
\left(a_{n} \ldots a_{2} a_{1} a_{0}\right)_{(-2)}=a_{n}(-2)^{n}+\cdots+a_{2}(-2)^{2}+a_{1}(-2)^{1}+a_{0}(-2)^{0} \quad \text { where } a_{i} \text { is either } 0 \text { or } 1 \tag{16}
\end{equation*}
\]

To find base -2 representation of \(n\), we repeatedly divide by -2 until the quotient becomes 0 and the remainders generated (which are either 0 or 1 ) will be the digits of base -2 representation.
\[
n=\text { Quotient } \times(-2)+\text { Reminder } \quad \rightarrow \quad \text { Quotient }=\text { Quotient }_{\text {new }} \times(-2)+\text { Reminder }_{\text {new }}
\]

For -3 , the process it as shown below,
\[
\begin{aligned}
& -3=2 \times(-2)+1 \quad \rightarrow \quad a_{0}=1 \\
& 2=-1 \times(-2)+0 \quad \rightarrow \quad a_{1}=0 \\
& -1=1 \times(-2)+1 \quad \rightarrow \quad a_{2}=1 \\
& 1=0 \times(-2)+1 \quad \rightarrow \quad a_{3}=1
\end{aligned}
\]

Hence \((-3)_{10}=(1101)_{(-2)}\).
Note. \(C++\) 's \% operator may give negative values when the dividend or divisor is negative.
For example, \((-1) \%(2)=(-1) \%(-2)=-1 \neq 1\).
Problem Statement:
Convert the given decimal number into base -2 for all test cases.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Starter Code} \\
\hline \multicolumn{2}{|l|}{Input Format} \\
\hline \(t\) & (number of test cases, an integer) \\
\hline \(n_{1} n_{2} \ldots . n_{t}\) & ( \(t\) space seperated integers for each testcase) \\
\hline Output Format & \\
\hline Converted base -2 number & (each test case on a newline) \\
\hline \multicolumn{2}{|l|}{Constraints} \\
\hline \multicolumn{2}{|l|}{Sample Input} \\
\hline \multicolumn{2}{|l|}{10} \\
\hline \multicolumn{2}{|l|}{-4-3-2-101234100} \\
\hline \multicolumn{2}{|l|}{Sample Output} \\
\hline \multicolumn{2}{|l|}{1100} \\
\hline \multicolumn{2}{|l|}{1101} \\
\hline \multicolumn{2}{|l|}{10} \\
\hline \multicolumn{2}{|l|}{11} \\
\hline \multicolumn{2}{|l|}{0} \\
\hline \multicolumn{2}{|l|}{1} \\
\hline \multicolumn{2}{|l|}{110} \\
\hline \multicolumn{2}{|l|}{111} \\
\hline \multicolumn{2}{|l|}{100} \\
\hline \multicolumn{2}{|l|}{110100100} \\
\hline More Test cases & \\
\hline Input and Output files & \\
\hline
\end{tabular}

Fun Video. Base 12 - Numberphile

\subsection*{4.5. Base Conversion}

In this problem, you will convert binary number to decimal and vice versa.
Hint. First solve the conversion problem for integers and then try to incorporate their fractional part.

\section*{(a) Problem Statement:}

Convert \(t\) positive binary numbers \(\left(n_{1}, n_{2}, \ldots, n_{t}\right)\) to decimal.

\section*{Starter Code}

\section*{Input Format}
\(t\)
(number of test cases, an integer)
\(n_{1} n_{2} \ldots n_{t}\) ( \(t\) space seperated numbers for each testcase)

\section*{Output Format}

Converted decimal number
(space seperated)

\section*{Constraints}
\(0 \leq n_{i} \leq 10^{15}\), a maximum of 8 digits after binary point ( ' .')
(base 2, a double)

\section*{Sample Input}

9
11111100011010101111001011000011.0001100111 .001001110 .0110110 .01110101
```

Sample Output
1.00000000 7.00000000 49.00000000 343.00000000 2401.00000000
6.25000000 22.45703125

```
(b) Problem Statement:

Convert \(t\) positive decimal numbers \(\left(n_{1}, n_{2}, \ldots, n_{t}\right)\) to binary.

\section*{Starter Code}
```

Input Format
t
(number of test cases, an integer)
n
(t space seperated numbers for each testcase)

```

\section*{Output Format}

Converted binary number truncated till 8 decimal places

\section*{Constraints}
\(0 \leq n_{i} \leq 2500\), a maximum of 8 digits after decimal point ('.')
```

Sample Input
9
17493432401 1.1 3.1415 6.25 22.459

```
```

Sample Output
1.00000000 111.00000000 110001.00000000 101010111.00000000 100101100001.00000000
1.00011001 11.00100100 110.01000000 10110.01110101

```

Fun Video. Dungeon Numbers - Numberphile

\section*{§5. Function Admiration}

Topics. functions, passing by value \& reference and previous sections.
For this problem set, try to modularise as much as possible; i.e., make functions for sensible repeating parts.

\subsection*{5.1. Collatz Conjecture}

Consider the following operation on an arbitrary positive integer:
- If the number is even, divide it by two.
- If the number is odd, triple it and add one.

This operation can be defined using the function \(f\) as follows:
\[
f(n)= \begin{cases}n / 2 & \text { if } n \text { is even }  \tag{17}\\ 3 n+1 & \text { if } n \text { is odd }\end{cases}
\]

Also note that the function updates \(n\) itself.
Let \(\left\{a_{i}\right\}\) be the sequence of values \(n\) acquires by applying \(f\) repeatedly.
Collatz conjecture states that for every positive integer this procedure will eventually reach 1.
For example, if initial value of \(n=3,1\) is reached in seven operations.
\[
3 \xrightarrow[(1)]{3 \times 3+1} 10 \xrightarrow[(2)]{10 / 2} 5 \xrightarrow[(3)]{3 \times 5+1} 16 \xrightarrow[(4)]{16 / 2} 8 \xrightarrow[(5)]{8 / 2} 4 \xrightarrow[(6)]{4 / 2} 2 \xrightarrow[(7)]{2 / 2} 1
\]

\section*{Problem Statement:}

Your task is to return the number of operations required to reach \(1^{1}\) for arbitrary number of inputs.


Fun Video. Collatz Conjecture: The Simplest Math Problem No One Can Solve - Veritasium

\footnotetext{
\({ }^{1}\) As of 2020 , the conjecture has been checked by computer for all starting values up to \(2^{68} \approx 2.95 \times 10^{20}\), so sequence from \(n\) will reach 1 for the given constraints.
}

\subsection*{5.2. Friendly Pair}

Two positive integers form a Friendly pair if they have a common abundancy index.
The abundancy index of a number is the ratio of sum of divisors of that number and the number itself.
\[
\begin{equation*}
\text { abundancy index }=\frac{\sigma(n)}{n} \text { where } \sigma(n) \text { is the sum of divisors of } n \tag{18}
\end{equation*}
\]

For example, 6 and 28 form a friendly pair \({ }^{2}\) as
\[
\frac{\sigma(6)}{6}=\frac{1+2+3+6}{6}=\frac{12}{6}=2=\frac{56}{28}=\frac{1+2+4+7+14+28}{28}=\frac{\sigma(28)}{28}
\]

\section*{Problem Statement:}

Given two numbers \(a, b\) check if they form a friendly pair.
Express the common abundancy (if it exists) as a quotient \(p / q\) where \(p, q\) are integers and \(q \neq 0\).
```

Starter Code
Input Format
t
(number of test cases, an integer)
a}\mp@subsup{a}{1}{}\mp@subsup{b}{1}{}\quad\mp@subsup{a}{2}{}\mp@subsup{b}{2}{}\quad···... at \mp@subsup{b}{t}{
(t space seperated integer pairs for each testcase)

```

\section*{Output Format}
```

Output the common abundancy if a_{i}, b_{i} form a friendly pair else output -1 (each test case on a newline)
$p_{a_{i}} / q_{a_{i}} \quad$ (where common abundancy $=p_{a_{i}} / q_{a_{i}}$ and $p_{a_{i}}, q_{a_{i}}$ are integers \& $q_{a_{i}} \neq 0$ in irreducible form)

```

\section*{Constraints}
```

$1<a_{i}, b_{i} \leq 10^{9}$

```

\section*{Function(s) to Implement}
```

long long sum_of_divisors (int n) - returns the sum of divisors of n
bool friendly_pair_check(int a, int b) - outputs the common abundancy index or -1

```
\begin{tabular}{llllllllllllllll}
6 & 28 & 10 & 20 & 30 & 140 & 30 & 2480 & 135 & 819 & 42 & 544635 & 1556 & 9285 & 4320 & 4680
\end{tabular}
```

Sample Input

```
Sample Input
10
10
6934795568640 84729645155315394
```

6934795568640 84729645155315394

```

\section*{Sample Output}
```

2
-1
12/5
12/5
16/9
16/7
-1
7/2
127/36
896/351

```

Fun Video. A Video about the Number 10 - Numberphile

\footnotetext{
\({ }^{2}\) in fact, they are called perfect numbers as their abundancy \(=2\)
}

\subsection*{5.3. Gauss Circle Problem}

Consider a circle in the \(x-y\) plane with center at the origin and radius \(r \geq 0\left(r \in \mathbb{R}\right.\) such that \(\left.r^{2}=n \in \mathbb{Z}\right)\).
Gauss's circle problem asks the number of lattice points \(N(r)\) in the interior or on the circumference of this circle.
These points are of the form \((x, y) \in \mathbb{Z}^{2}\) such that \(x^{2}+y^{2} \leq r^{2}=n\). Also, note that \(N(r) \sim \pi r^{2}\) (why?).


Figure 7: A circle with \(r=5\) units bounding 81 integer points. \(N(r)=81 \sim \pi r^{2} \approx 78.54\)
Consider the subproblem of finding \(M(i)\) - the number of \((x, y) \in \mathbb{Z}^{2}\) such that \(x^{2}+y^{2}=i\) where \(i \in\{; 0,1, \ldots, n\}\)
Clearly \(N(r)=\sum_{i=0}^{r^{2}} M(i) \rightarrow N(\sqrt{n})=\sum_{i=0}^{n} M(i)\). Now,
\[
M(i)=4 \sum_{j \mid n} \chi(j) \quad \text { where } \quad \chi(n)= \begin{cases}1 & \text { if } n \% 4=1  \tag{19}\\ -1 & \text { if } n \% 4=3 \\ 0 & \text { else }\end{cases}
\]

\section*{Problem Statement:}

Calculate \(N(\sqrt{n})\) for a given \(n\); i.e. the number of lattice points \((x, y)\) such that \(x^{2}+y^{2} \leq n\).


Interesting Observation. Does the last few outputs look familiar? How can this happen? :o
Also, if the last output took a long time then think how you can do the calculations faster?
Fun Video. Pi hiding in prime regularities - 3Blue1Brown
Your New Favorite Formula For Pi - BriTheMathGuy

\subsection*{5.4. Euler's Totient Function}

Euler's totient function \(\varphi(n)\) is the number of positive integers \(\leq n\) that are co-prime to \(n\).
A simple apporach to calculating this function is to count the integers \(i\) 's such that \(1 \leq i \leq n\) and \(\operatorname{gcd}(i, n)=1\).
But there is a better way using the Euler's Product Formula
\[
\begin{equation*}
\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right) \quad \text { For all primes } p \leq n \tag{20}
\end{equation*}
\]

So, if \(n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{r}^{k_{r}}\), where \(p_{1}, p_{2}, \ldots, p_{r}\) are the distinct primes dividing \(n\)
\[
\varphi(n)=p_{1}^{k_{1}-1}\left(p_{1}-1\right) p_{2}^{k_{2}-1}\left(p_{2}-1\right) \cdots p_{r}^{k_{r}-1}\left(p_{r}-1\right)
\]

\section*{Problem Statement:}

Calculate \(\varphi(n)\) for a given \(n\)

\section*{Starter Code}

\section*{Input Format}
\(t\)
(number of test cases, an integer)
\(n_{1} n_{2} \ldots n_{t}\) ( \(t\) space seperated integers for each testcase)

\section*{Output Format}
\(\varphi\left(n_{i}\right)\)
(each test case on a newline)

\section*{Constraints}
\(1<n_{i} \leq 10^{9}\)

\section*{Function(s) to Implement \\ int totient (int n ) - returns \(\varphi(n)\)}

\section*{Sample Input \\ 13}

1482044699712025205544027720072072088888888

\section*{Sample Output}

1
2
4
8
20
44
96
32
576
11520
57600
138240
12690687

\subsection*{5.5. Regular Star Polygon}

A regular star polygon is a self-intersecting, equilateral equiangular polygon. It is denoted by Schläfli symbol \(\{n / m\}\) where \(n\) is the number of vertices and \(m\) is the density (sum of the turn angles of all the vertices \(360^{\circ}\) ).
Construction via vertex connection Connect every \(m^{\text {th }}\) point out of \(n\) points regularly spaced on a circle.
For example, check out the demo videos for constructing \(\{7,2\}\) and \(\{7,3\}\).
So a seven-pointed star can be obtained in two-ways,
By connecting vertex 1 to 3 , then 3 to 5 , then 5 to 7 , then 7 to 2 , then 2 to 4 , then 4 to 6 , then 6 to 1 or by By connecting vertex 1 to 4 , then 4 to 7 , then 7 to 3 , then 3 to 6 , then 6 to 2 , then 2 to 5 , then 5 to 1 .

\section*{Problem Statement:}

Construct the \(\{n / m\}\) regular star polygon for given \(n, m\).

\section*{Starter Code}

\section*{Input Format}
\(m\) n
(2 space seperated integers)

\section*{Output Format}

Regular Star Polygon with Schläfli symbol \(\{n / m\}\)

\section*{Constraints}
\(1 \leq n \leq 50,1 \leq m<n / 2\)

\section*{Function(s) to Implement}
void regular_star_polygon(int \(n\), int \(m\) ) - draws the correspoding regular star polygon

\section*{Sample Input}

See 8.

\section*{Sample Output}

See 8.


Figure 8: Some inputs \(m, n\) and their correspoding star polygons in a tabular fashion.

Fun Video. The 3-4-7 miracle. Why is this one not super famous? - Mathologer

\section*{§6. Recursion Salvation}

Topics. recursive functions and previous sections.

\section*{Five Simple Steps for Solving Any Recursive Problem}
(Courtesy - Reducible)
- What's the simplest possible input?
- Play around with examples and visualize!
- Relate hard cases to simpler cases
- Generalize the pattern
- Write code by combining recursive pattern with base case

\subsection*{6.1. Ackermann Function}

Ackermann Function is defined as follows
\[
\begin{align*}
\mathrm{A}(0, n) & =n+1 \\
\mathrm{~A}(m, 0) & =\mathrm{A}(m-1,1)  \tag{21}\\
\mathrm{A}(m, n) & =\mathrm{A}(m-1, \mathrm{~A}(m, n-1))
\end{align*}
\]

\section*{Problem Statement:}

Calculate \(\mathrm{A}(m, n)\) (given \(m, n\) ) for all test cases.
```

Starter Code
Input Format
t
$m_{1} n_{1} \quad m_{2} n_{2} \quad \ldots \quad m_{t} n_{t}$
(t space seperated integer pairs for each testcase)
Output Format
$\mathrm{A}\left(m_{i}, n_{i}\right)$
(each on a newline)

```

\section*{Constraints}
```

m_{i}, n_{i} are postive integers such that $\mathrm{A}\left(m_{i}, n_{i}\right)$ is within the range of int

```

\section*{Function(s) to Implement}
```

int A (int m , int n) - returns $A(m, n)$

```

\section*{Sample Input}
```

10

```


\section*{Sample Output}
```

1
6
2
5
11
13
61
4093
13
65533

```

Interesting Observation. Was your program able to compute the last output? Why not? How to fix this?
Fun Video. The Most Difficult Program to Compute? - Computerphile

\subsection*{6.2. Horner's Method}

Consider, the problem of evaluating a polynomial given its coefficients.
\[
f(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+a_{3} \cdot x^{3}+\cdots+a_{n} \cdot x^{n}
\]

A naive method is to evaluate \(x^{0}, x^{1}, x^{2}, \ldots, x^{n}\) independently, then multiply \(x^{i}\) with \(a_{i}\) and add all results.
\[
f(x)=a_{0}+a_{1} \cdot x+a_{2} \cdot x \cdot x+a_{3} \cdot x \cdot x \cdot x+\cdots+a_{n} \underbrace{x \cdot x \cdots x}_{n \text { times }}
\]

This approach takes \(1+2+\cdots+n=n(n+1) / 2\) multiplications and \(n\) additions.
It can be improved by using the precalculated \(x^{i-1}\) and multiplying it by \(x\) to get \(x^{i}\). This reduces the number of multiplications significantly to \(2 n-1\) while keeping the number of additions \(n\).
\[
f(x)=a_{0}+a_{1} \cdot x^{0} \cdot x+a_{2} \cdot x^{1} \cdot x+a_{3} \cdot x^{2} \cdot x+\cdots+a_{n} x^{n-1} \cdot x
\]

But surprisingly there is an even better way! Horner's Method as described in 22, is an optimal algorithm for polynomial evaluation needing only \(n\) multiplications and \(n\) additions.
\[
\begin{equation*}
f(x)=a_{0}+x\left(a_{1}+x\left(a_{2}+x\left(a_{3}+\cdots+x\left(a_{n-1}+x a_{n}\right) \cdots\right)\right)\right) \tag{22}
\end{equation*}
\]

Problem Statement:
Evaluate polynomial given by coefficients at \(x\) using Horner's Method for all test cases.

\section*{Starter Code}

\section*{Input Format}
\(t\)
(number of test cases, an integer)
\(x_{i} \quad n_{i} \quad a_{0} \quad a_{1} \quad a_{2} \cdots a_{n_{i}}\)
( \(n_{i}+3\) space seperated integers for each testcase)

\section*{Output Format}
\(f\left(x_{i}\right) \quad\) (each on a newline)

\section*{Constraints}
\(1<x_{i}, n_{i}, a_{i} \leq 10^{4}\)
Also assume that the calculations are always within the range of long long

\section*{Function(s) to Implement}
long long f (const int \&x, int a , int b ) - returns \(f(x)\), you are also given two extra parameters.
```

Sample Input
6
0 1
-32
15-87
2-1-34
2110194748927
14 -1 59 265 -35 8-97 -932 38 4 -62 -643 38 -3 27 950

```

\section*{Sample Output}

1
1
27
80
486421
4552224296
Interesting Observation. If recursion was not allowed do you think it would be possible to solve this problem given it's input order was ( \(a_{0} a_{1} a_{2} \cdots a_{n_{i}}\) )? Problem 2.5 had inputs in reverse order \(a_{n_{i}} a_{n_{i-1}} \ldots a_{1} a_{0}\). By taking inspiration from recursion, solve it when the inputs are in correct order ( \(a_{0} a_{1} a_{2} \cdots a_{n_{i}}\) ).
Fun Video. How Imaginary Numbers Were Invented - Veritasium

\subsection*{6.3. Modular Exponentiation}

Consider the problem of calculating \(x^{y}(\bmod k)\) (i.e. the remainder when \(x^{y}\) is divided by \(k\) )
A naive approach is to keep multiplying by \(x(\) and take \((\bmod k))\) until we reach \(x^{y}\). \({ }^{3}\)
\[
x(\bmod k) \rightarrow x^{2}(\bmod k) \rightarrow x^{3}(\bmod k) \rightarrow x^{4}(\bmod k) \rightarrow \cdots \rightarrow x^{y}(\bmod k)
\]

We can use a much faster method which involves repeated squaring of \(x(\bmod k)\)
\[
\begin{equation*}
x(\bmod k) \rightarrow x^{2}(\bmod k) \rightarrow x^{4}(\bmod k) \rightarrow x^{8}(\bmod k) \rightarrow \cdots \rightarrow x^{2^{[\log y]}}(\bmod k) \tag{23}
\end{equation*}
\]

The idea is to multiply some of the above numbers and get \(x^{y}(\bmod k)\)
This is achieved by choosing all powers that have 1 in binary representation of \(y\).
For example,
\[
x^{25}=x^{11001_{2}}=x^{10000_{2}} \cdot x^{1000_{2}} \cdot x^{1_{2}}=x^{16} \cdot x^{8} \cdot x^{1}
\]
which gives,
\[
x^{25}(\bmod k)=\left(\left(x^{16}(\bmod k)\right) \cdot\left(x^{8}(\bmod k)\right) \cdot\left(x^{1}(\bmod k)\right)\right)(\bmod k)
\]
(a) Problem Statement:

Calculate \(x^{y}(\bmod k)\) using the above method for \(n(x, y, k)\) triples. Take \(k=10^{9}+7\). why this number?
```

Starter Code
lnput Format
Output Format
xi
Constraints
1< xi, yi\leq10
Function(s) to Implement
int mod_exp(int x, int y, int k) - returns }\mp@subsup{x}{}{y}(\operatorname{mod}k

```

\section*{Sample Input}
```

5
$34 \quad 28 \quad 123123 \quad 129612095411099530 \quad 241615980487174929$

```

\section*{Sample Output}
```

81
256
921450052
276067146
838400234

```

Note. Before proceeding to next task, verify your program on more testcases from here.
(b) Problem Statement:

Calculate \(x^{y^{z}}(\bmod k)\) using the above method for \(n(x, y, k)\) triples. Take \(k=10^{9}+7\). why this number?
```

Starter Code
Input Format
*

```


\section*{Output Format}
\(x_{i}^{y_{i}^{z_{i}}}(\bmod k) \quad\) (each test case on a newline)

\section*{Constraints}
\(1<x_{i}, y_{i}, z_{i} \leq 10^{9}\)

\section*{Function(s) to Implement}
int mod_super_exp(int x , int y , int z , int k\()-\mathrm{returns} x^{y^{z}}(\bmod k)\)

\section*{Sample Input}

5
\(371 \quad 1522345427077162725488735969284582 \quad 690776228346821890923815306\)

\section*{Sample Output}

2187
50625
763327764
464425025
534369328
Note. Verify your program on more testcases from here.
Fun Video. Square \& Multiply Algorithm - Computerphile
\({ }^{3}\) this works because \((a \cdot b)(\bmod m)=((a(\bmod m)) \cdot(b(\bmod m)))(\bmod m)\)

\subsection*{6.4. Partitions}

A partition of a natural number \(n\) is a way of decomposing \(n\) as sum of natural numbers \(\leq n\).
For example, their are 5 partitions of 4 given by \(\{4,3+1,2+2,2+1+1,1+1+1+1\}\).
Let use denote the number of partitions of \(n\) by \(\mathrm{P}(n)\).
Now, we move to a seemingly unrelated theorem.
Theorem 1 (Pentagonal Number Theorem). PNT relates the product and series representations of the Euler function
\[
\begin{equation*}
\prod_{n=1}^{\infty}\left(1-x^{n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} x^{k(3 k-1) / 2}=1+\sum_{k=1}^{\infty}(-1)^{k}\left(x^{k(3 k+1) / 2}+x^{k(3 k-1) / 2}\right) \tag{24}
\end{equation*}
\]

In other words,
\[
(1-x)\left(1-x^{2}\right)\left(1-x^{3}\right) \cdots=1-x-x^{2}+x^{5}+x^{7}-x^{12}-x^{15}+x^{22}+x^{26}-\cdots
\]

The exponents \(1,2,5,7,12, \ldots\) on the right hand side are called (generalized) pentagonal numbers (A001318). They are given by the formula \(p_{k}=k(3 k-1) / 2\) for \(k=1,-1,2,-2,3,-3, \ldots\)
Equation 24 implies a recurrence relation for calculating \(\mathrm{P}(n)\) given by
\[
\begin{equation*}
\mathrm{P}(n)=\mathrm{P}(n-1)+\mathrm{P}(n-2)-\mathrm{P}(n-5)-\mathrm{P}(n-7)+\cdots=\sum_{k \neq 0}(-1)^{k-1} \mathrm{P}\left(n-p_{k}\right) \tag{25}
\end{equation*}
\]

\section*{Problem Statement:}

Calculate \(\mathrm{P}(n)\) for all test cases using24 or otherwise :).
```

Starter Code
Input Format
t
(number of test cases, an integer)
n
(t space seperated integers for each testcase)

```

\section*{Output Format}
```

$\mathrm{P}\left(n_{i}\right)$
(each test case on a newline)

```

\section*{Constraints}
\(1 \leq n_{i} \leq 40\)

\section*{Function(s) to Implement}
int P (int n ) - returns \(\mathrm{P}(n)\)

\section*{Sample Input \\ 9 \\ 1234510203040}

\section*{Sample Output}

1
2
3
5
7
42
627
5604
37338
Fun Video. Partitions - Numberphile
The hardest What comes next (Euler's pentagonal formula) - Mathologer

\subsection*{6.5. Hereditary Representation}

The usual base \(b\) representation is of a natural number is given by
\[
\begin{equation*}
n_{b}=a_{0} \cdot b^{0}+a_{1} \cdot b^{1}+\cdots \quad \text { where } a_{i} \text { 's } \in\{0,1, \ldots, b-1\} \tag{26}
\end{equation*}
\]

Here the power \(i\) of exponent \(b^{i}\) is in decimal but what if we continue to represent \(i\) in base \(b\) until we use only \(0,1,2, \ldots, b-1\) for all exponents of \(b\).
This is the Hereditary Representation! Representing a natural number \(n_{b}\) in base \(b\) using only \(0,1,2, \ldots, b-1\) as exponents of \(b\).
To generate this representation, find the usual base representation of the number and then represent its exponents also in the usual base representation. Keep repeating this until there is no exponent \(>b\).

For example,
\[
\begin{align*}
666_{2} & =2^{1}+2^{3}+2^{4}+2^{7}+2^{9} \\
& =2^{1}+2^{2^{0}+2^{1}}+2^{2^{2}}+2^{2^{0}+2^{1}+2^{2}}+2^{2^{0}+2^{3}}  \tag{27}\\
& =2^{1}+2^{2^{0}+2^{1}}+2^{2^{2^{1}}}+2^{2^{0}+2^{1}+2^{2^{1}}}+2^{2^{0}+2^{2^{0}+2^{1}}}
\end{align*}
\]

Here are some more examples to get familiar,
\[
\begin{aligned}
10_{2} & =2^{1}+2^{2^{0}+2^{1}} \\
100_{2} & =2^{2^{1}}+2^{2^{0}+2^{2^{1}}}+2^{2^{1}+2^{2^{1}}} \\
3435_{3} & =2 \cdot 3^{1}+3^{3^{1}}+2 \cdot 3^{2 \cdot 3^{0}+3^{1}}+3^{2 \cdot 3^{1}}+3^{3^{0}+2 \cdot 3^{1}} \\
754777787027_{10} & =7 \cdot A^{0}+2 \cdot A^{1}+7 \cdot A^{3}+8 \cdot A^{4}+7 \cdot A^{5}+7 \cdot A^{6}+7 \cdot A^{7}+7 \cdot A^{8}+4 \cdot A^{9}+5 \cdot A^{A^{1}}+7 \cdot A^{A^{0}+A^{1}}
\end{aligned}
\]

\section*{Problem Statement:}

Output the Hereditary Representation of the input natural number \(n\) in base \(b(\geq 2)\) following the below conventions:
- Use,\(+ *\) to denote addition (add space between operands), multiplication (no space between operands) respectively and \(\mathrm{b}^{\wedge}\{\mathrm{y}\}\) for \(b^{y}\) where \(y\) is some expression
- The powers of base representation are in increasing order (first \(b^{0}\) then \(b^{1}\) then \(b^{2}\) and so on)
- Powers are displayed only when their coefficients are \(>0\) (non-zero)
- Coefficients themselves are only displayed when they are \(>1\).
- The exponents between 0 and \(b-1\) must not be simplified further. So, \(b\) is represented as \(b^{\wedge}\{1\}\) and not as \(b^{\wedge}\left\{b^{\wedge}\{0\}\right\}\).
- For bases \(>10\), use capital alphabets \((A, B, C, \ldots, Z)\) to denote \((10,11,12, \ldots, 35)\) respectively.
```

Starter Code
Input Format
t
n
(number of test cases, an integer)
(t space seperated pairs (number, base) for each testcase)

```

\section*{Output Format}
```

Hereditary Representation of n_{i} in base b_{i}

```
Constraints
```

Constraints
1< ni < 2 }10\mp@subsup{0}{}{18
1< ni < 2 }10\mp@subsup{0}{}{18
1< b

```
1< b
```


Function(s) to Implement

```
void Hereditary (long long num, int base) - prints the required representation
```


Sample Input

```
\(2210210026663 \quad 3435313816547290438165472909381654729035116284943978540593510\)
```


Sample Output

```
2~ \(\{1\}\)
\(2^{\wedge}\{1\}+2^{\wedge}\left\{2^{\wedge}\{0\}+2^{\wedge}\{1\}\right\}\)
\(2^{\wedge}\left\{2^{\wedge}\{1\}\right\}+2^{\wedge}\left\{2^{\wedge}\{0\}+2 \wedge\left\{2^{\wedge}\{1\}\right\}\right\}+2^{\wedge}\left\{2^{\wedge}\{1\}+2^{\wedge}\left\{2^{\wedge}\{1\}\right\}\right\}\)
\(2^{*} 3^{\wedge}\{2\}+2^{*} 3^{\wedge}\left\{3^{\wedge}\{0\}+3^{\wedge}\{1\}\right\}+2^{*} 3^{\wedge}\left\{2^{*} 3^{\wedge}\{0\}+3^{\wedge}\{1\}\right\}\)
\(2^{*} 3^{\wedge}\{1\}+3^{\wedge}\left\{3^{\wedge}\{1\}\right\}+2^{*} 3^{\wedge}\left\{2^{*} 3^{\wedge}\{0\}+3^{\wedge}\{1\}\right\}+3^{\wedge}\left\{2^{*} 3^{\wedge}\{1\}\right\}+3^{\wedge}\left\{3^{\wedge}\{0\}+2^{*} 3^{\wedge}\{1\}\right\}\)
\(2^{*} 4^{\wedge}\{0\}+2^{*} 4^{\wedge}\{1\}+4^{\wedge}\{2\}+3^{*} 4^{\wedge}\{3\}+3^{*} 4^{\wedge}\left\{4^{\wedge}\{1\}\right\}+2^{*} 4^{\wedge}\left\{2^{*} 4^{\wedge}\{0\}+4^{\wedge}\{1\}\right\}+3^{*} 4^{\wedge}\left\{3^{*} 4^{\wedge}\{0\}+4^{\wedge}\{1\}\right\}+3^{*} 4^{\wedge}\left\{2^{*} 4^{\wedge}\{1\}\right\}+2^{*} 4^{\wedge}\left\{4^{\wedge}\{0\}+\right.\) \(\left.2^{*} 4^{\wedge}\{1\}\right\}+3^{*} 4^{\wedge}\left\{2^{*} 4^{\wedge}\{0\}+2^{*} 4^{\wedge}\{1\}\right\}+4^{\wedge}\left\{3^{*} 4^{\wedge}\{0\}+2^{*} 4^{\wedge}\{1\}\right\}+3^{*} 4^{\wedge}\left\{3^{*} 4^{\wedge}\{1\}\right\}+2^{*} 4^{\wedge}\left\{2^{*} 4^{\wedge}\{0\}+3^{*} 4^{\wedge}\{1\}\right\}+3^{*} 4^{\wedge}\left\{3^{*} 4^{\wedge}\{0\}+3^{*} 4^{\wedge}\{1\}\right\}\)
\(2^{*} 8^{\wedge}\{0\}+3^{*} 8^{\wedge}\{1\}+7^{*} 8^{\wedge}\{2\}+8^{\wedge}\{3\}+6^{*} 8^{\wedge}\{4\}+7^{*} 8^{\wedge}\{5\}+6^{*} 8^{\wedge}\{6\}+3^{*} 8^{\wedge}\{7\}+3^{*} 8^{\wedge}\left\{8^{\wedge}\{1\}\right\}+4^{*} 8^{\wedge}\left\{8^{\wedge}\{0\}+8^{\wedge}\{1\}\right\}+3^{*} 8^{\wedge}\left\{2^{*} 8^{\wedge}\{0\}+\right.\) 8~\{1\}\}
\(5^{*} A^{\wedge}\{0\}+3^{*} A^{\wedge}\{1\}+9^{*} A^{\wedge}\{2\}+5^{*} A^{\wedge}\{3\}+4^{*} A^{\wedge}\{5\}+5^{*} A^{\wedge}\{6\}+8^{*} A^{\wedge}\{7\}+7^{*} A^{\wedge}\{8\}+9^{*} A^{\wedge}\{9\}+3^{*} A^{\wedge}\left\{A^{\wedge}\{1\}\right\}+4^{*} A^{\wedge}\left\{A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}\) \(+9^{*} A^{\wedge}\left\{2^{*} A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}+4^{*} A^{\wedge}\left\{3^{*} A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}+8^{*} A^{\wedge}\left\{4^{*} A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}+2^{*} A^{\wedge}\left\{5^{*} A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}+6^{*} A^{\wedge}\left\{6^{*} A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}+\)
\(A^{\wedge}\left\{7^{*} A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}+A^{\wedge}\left\{8^{*} A^{\wedge}\{0\}+A^{\wedge}\{1\}\right\}\)
```


More Test cases

Input and Output files
Fun Video. Kill the Mathematical Hydra - PBS Infinite Series
How Infinity Explains the Finite - PBS Infinite Series

§7. Paths Paranoia (More Recursion?)

Topics. recurrence relations and previous sections.

7.1. Staircase Walk

Consider a grid with m horizontal lines and n vertical lines. A Staircase Walk is defined as the path from bottom-left corner of the grid to the top right corner by walking along the lines; so, the person is constrained to move only in positive x or positive y direction.

Figure 9: Example walks for case $m=n=1(\# 2), m=n=2(\# 6), m=n=3(\# 20)$ (Image Source)

Problem Statement:

Find the number of possible Staircase Walks for a given m, n (for all test cases).

Starter Code	
Input Format	
t	(number of test cases, an integer)
$m_{1} n_{1} \quad m_{2} n_{2} \quad \ldots . \quad m_{t} n_{t}$	(t space seperated integer pairs for each testcase)
Output Format	
Number of Staircase Walks for m_{i}, n_{i}	(each test case on a newline)
Constraints	
$1 \leq m_{i}, n_{i} \leq 15$	
Function(s) to Implement	
int staircase_walks (int m, int n) - returns the number of staircase walks for m, n.	
Sample Input	
6	
$\begin{array}{llllllll}11 & 25 & 63 & 710 & 138 & 1515\end{array}$	
Sample Output	
1	
5	
21	
5005	
50388	
40116600	

Fun Video. The Devil's Staircase - PBS Infinite Series
$5=3+4$? The Staircase Paradox. Spot The Mistake "Disproving" The Pythagorean Theorem - Mind Your Decisions

7.2. Dyck Path

A Dyck Path is Staircase Walk $(m=n)$ when the path always stays on or below the diagonal.

Figure 10: Example walks for case $n=1(\# 1), n=2(\# 2), n=3(\# 5), n=4(\# 14)$ (Image Source)

Problem Statement:

Find the number of possible Dyck Path for a given n (for all test cases).

7.3. Delannoy Number

Consider a grid with m horizontal lines and n vertical lines. A Delannoy Number is defined as the path from bottomleft corner of the grid to the top right corner by walking along the lines or diagonally upwards; so, the person is constrained to move only in positive x or positive y or positive $x-y$ (i.e. along $y=x$) direction.

Figure 11: Example walks for case $m=n=1(\# 2), m=n=2(\# 6), m=n=3(\# 20)$ (Image Source)

Problem Statement:

Find the number of possible Delannoy Numbers for a given m, n (for all test cases).

Starter Code

Input Format
t
(number of test cases, an integer)
$m_{1} n_{1} \quad m_{2} n_{2} \quad \ldots \quad m_{t} n_{t}$ (t space seperated integer pairs for each testcase)

Output Format

Number of Delannoy Numbers for m_{i}, n_{i}
(each test case on a newline)

Constraints

$1 \leq m_{i}, n_{i} \leq 13$

Function(s) to Implement

int delannoy_number (int m, int n) - returns the number of Delannoy Numbers for m, n.

```
Sample Input
1 1
11122
```


Sample Output

3
13
63
1683
8097453
1409933619
61
63
377
433905
8405905

7.4. Schröder Number

A Schroder Number is count of Delannoy Walks $(m=n)$ when the path always stays on or below the diagonal.

Figure 12: Example walks for case $n=1(\# 2), n=2(\# 6), n=3$ ($\# 22$) (Image Source)
Problem Statement:
Find the Schroder Number for a given n (for all test cases).

Starter Code

Input Format

t
(number of test cases, an integer)
$n_{1} n_{2} \ldots n_{t}$ (t space seperated integers for each testcase)

Output Format

Number of Schroder Numbers for n_{i}

```
                                    (each test case on a newline)
```


Constraints

$1 \leq n_{i} \leq 14$

Function(s) to Implement

int schroder_number (int n) - returns the number of possible delannoy walks for n.

```
Sample Input
14
1234567891011121314
```


Sample Output

2
6
22
90
394
1806
8558
41586
206098
1037718
5293446
27297738
142078746
745387038

7.5. Motzkin Number

Consider a grid with n horizontal lines and n vertical lines. A Motzkin Number is defined as the number of paths from bottom-left corner of the grid to the bottom-right corner which always stays on or above x-axis by walking horizontally fowards or diagonally upwards or diagonally downwards; so, the person is constrained to move only in positive x and along $y=x$ or $y=-x$ (y direction can be negative).

Figure 13: Example walks for case $n=1(\# 1), n=2(\# 2), n=3(\# 4), n=4(\# 9)$ (Image Source)

Problem Statement:

Find the Motzkin Number for a given n (for all test cases).

Starter Code

Input Format

t
(number of test cases, an integer)
$n_{1} n_{2} \ldots n_{t}$ (t space seperated integers for each testcase)

Output Format

Number of Motzkin Numbers for n_{i} (each test case on a newline)

Constraints

$1 \leq n_{i} \leq 20$

Function(s) to Implement

int motzkin_number (int n) - returns the number of possible walks for n.

Sample Input

10
12345811141720

```
Sample Output
1
2
4
9
21
323
5798
113634
2356779
50852019
```


7.6. Hilbert Curve

Figure 14: Hilbert Curve (Image Source)

Problem Statement:

Take an integer as input and draw the corresponding iteration of this fractal using turtleSim You may think along these lines

Step 1 Find a simple pattern in these iterations.
Step 2 Think how can you implement this pattern in an efficient way (here think in the number of lines of code you have to write. Word of caution: this is just one of the possible definitions of efficient code).

Step 3 Write the code!
In case you are stuck, here's the starter code!

Starter Code

Feel free to discuss your thoughts.
Fun Video. Hilbert's Curve: Is infinite math useful? - 3Blue1Brown Recursive PowerPoint Presentations [Gone Fractal!] - Stand-up Maths

For more interesting recursive and fractal problems, check out L-Systems.

§8. Sequence Eminence (Intro to Arrays)

Topics. array traversal, manipulation and previous sections. Some problems can be solved without arrays too

8.1. Josephus Problem

Suppose there are n terrorists around a circle facing towards the centre. They are numbered 1 to n along clockwise direction. Initially, terrorist 1 has the sword. Now, the terrorist with sword kills the $k^{\text {th }}$ nearest alive terrorist to its left and passes the sword to $(k+1)^{\text {st }}$ nearest alive terrorist to its left. The process repeats. Basically, every $k^{\text {th }}$ terrorist is killed until only one survives. Then the last terrorist is killed.

Figure 15: Example arrangement of 10 terrorists
For example, in the above arrangement,
when $k=1,1$ kills 2,3 kills 4,5 kills 6,7 kills 8,9 kills 10,1 kills 3,5 kills 7,9 kills 1 and 5 kills 9 . So, 5 survives; when $k=2,1$ kills 3,4 kills 6,7 kills 9,10 kills 2,4 kills 7,8 kills 1,4 kills 8,10 kills 5 and 4 kills 10 . So, 4 survives. Problem Statement:
For a given n, k pair, and starting position 1, print the terrorists in the sequence they are killed.

```
Starter Code
Input Format
t (number of test cases, an integer)
n}\mp@subsup{n}{1}{}\mp@subsup{k}{1}{}\quad\mp@subsup{n}{2}{}\mp@subsup{k}{2}{}\quad\ldots.\quadnt\mp@subsup{k}{t}{}\quad(t\mathrm{ space seperated pairs (number of terrorists }n\mathrm{ and }k\mathrm{ ) for each testcase)
```


Output Format

```
Terrorists in the sequence they are killed (each test case on a newline)
```


Constraints

```
\(1 \leq k_{i} \leq n_{i} \leq 100\)
```

```
Sample Input
```

Sample Input
9

```
9
```


Sample Output

```
1
21
2431
3241
24683751
48521376
36927185104
81692126315141511104137
26229634124120503214463015493723113433628242119222735421103342574438 31405181639917454813847
```

Note. Verify your program on even more testcases from here.
Fun Video. The Josephus Problem - Numberphile

8.2. Van Eck's Sequence

The Van Eck's Sequence is defined as follows:

- $a_{0}=0$ then for $n>0$,
- $a_{n+1}= \begin{cases}n-m & \text { where } m \text { the maximal index }<n \text { exists, such that } a_{m}=a_{n} \\ 0 & \text { if such } m<n \text { doesn't exist, then we take } m=n \rightarrow a_{n+1}=0 .\end{cases}$

Problem Statement:

Generate the first $n+1$ elements $a_{0}, a_{1}, \ldots, a_{n}$ of the Van Eck's Sequence.
Starter Code
Input Format
n
n
(a single integer)

Output Format

$a_{0} a_{1} \ldots a_{n}$
(space seperated integers)

Constraints

$1 \leq n \leq 100000$

Sample Input

500

Sample Output

0010202216050265405303290493614063515053521706110380331420 5152004320311180470373231063136328330956038719053703881460623 0392104425625052181852061841305116204740044136051316048270441 131006329204951044114131061447390661120539836440610340419970441 19612218209430398033115152061717004240312244611982129010450313840 414700441345806231440495194057803260331213806214197606611256166 07111032116145053320604234619405947049422230633193913206614018506 52328054220434636151061512604101100441291180614112049511020533500 4991203070788034226204142723305236004922605821008322833134156010 6303811183052217199055119109067303197581832064082617404523190441 25331062547236907469710646215806462622130010735404132470441136 18367085903702570414123044

More Test cases

Input and Output files
Fun Video. Don't Know (the Van Eck Sequence) - Numberphile

8.3. Look-And-Say Sequence

As the name suggests, the look-and-say sequence is generated by the reading of the digits of the previous sequence. For example, starting with the sequence $\mathbf{1}$.

- $\mathbf{1}$ is read off as "one 1 " or $\mathbf{1 1}$.
- $\mathbf{1 1}$ is read off as "two 1 s " or 21 .
- 21 is read off as "one 2 , one 1 " or 1211 .
- 1211 is read off as "one 1 , one 2 , two 1 s " or 111221 .
- 111221 is read off as "three 1 s , two 2 s , one 1 " or 312211 and so on.

Problem Statement:

Generate the first n iterations of the look-and-say sequence.

```
Starter Code
Input Format
n (a single integer)
```


Output Format

```
First \(n\) iterations of the look-and-say sequence (each iteration on a newline)
```


Constraints

```
\(1 \leq n \leq 40\)
```


Sample Input

```
15
```


Sample Output

```
1
11
21
1211
111221
312211
13112221
1113213211
31131211131221
13211311123113112211
11131221133112132113212221
3113112221232112111312211312113211
1321132132111213122112311311222113111221131221
11131221131211131231121113112221121321132132211331222113112211
311311222113111231131112132112311321322112111312211312111322212311322113212221
```


More Test cases

```
Input and Output files
```

Fun Video. Look-and-Say Numbers (feat John Conway) - Numberphile

8.4. Thue-Morse Sequence

Thue-Morse Sequence aka Fair Share Sequence is an infinite binary sequence obtained by starting with 0 and successively appending the Boolean complement of the sequence obtained thus far (called prefixes of the sequence).
For example, starting with the sequence $\mathbf{0}$,

- Append complement of $\mathbf{0}$, we get $0 \mathbf{1}$
- Append complement of 01, we get $01 \mathbf{1 0}$
- Append complement of 0110, we get 01101001 and so on.

Also, by using Thue-Morse sequence elements in the turtle simulator, we get a mysterious curve ${ }^{4}$ by following the below rule.

- If an element is 0 , then the turtle rotates right by 180°.
- If an element is 1 , then the turtle moves forward by one unit and then rotates right by 60°.

Can you figure out the pattern of this curve?

Problem Statement:

Generate the first n elements of the Thue-Morse sequence and draw the corresponding curve using turtleSim.
Scale the curve in such a way that it roughly takes same width and height for all n.

Starter Code

Input Format
n

Output Format

First n elements of the Thue-Morse sequence and the curve.

Constraints

$1 \leq n \leq 100000$ (n need not be a power of 2)
Sample Input
111
Sample Output
011010011001011010010110011010011001011001101001011010011001011010010110011010010110100110010110011010011001011

More Test cases

Input and Output files
The output Koch Curve convergents

Figure 16: Koch Curve Iterations and the outputs for odd powers of 2

(a) $n=4$

(b) $n=111$

(c) $n=1729$

Figure 17: The outputs for numbers which are not a odd power of 2

Fun Video. The Fairest Sharing Sequence Ever - Stand-up Maths
Fractal charm: Space filling curves - 3Blue1Brown

[^0]
8.5. Recaman's Sequence

The Recaman's sequence is defined as below:

- $r_{0}=0$
- $r_{n}= \begin{cases}r_{n-1}-n & \text { if } r_{n-1}-n>0 \text { and } \forall i<n, r_{i} \neq r_{n-1}-n, \text { i.e. } r_{n-1}-n \text { is positive and has not yet occurred in the sequence } \\ r_{n-1}+n & \text { otherwise }\end{cases}$

Also, by using Recaman's sequence elements in the turtle simulator, we can get beautiful curves as shown in 18 by following the below rules:

Figure 18: Recaman's Sequence Drawing Procedure

- Create a canvas named "Recamans Sequence" with width $=1920$, and height $=1080$.
- Connect all consecutive terms using semicircles.
- The semicircles should be parallel to x-axis with end points as consecutive terms
- The semicircles should alternate above and below the x-axis; i.e., it should be below the axis when connecting r_{0}, r_{1}, above the axis when connecting r_{1}, r_{2} again below for r_{2}, r_{3}, and so on
- The figure should be dynamic; i.e., the x-axis should be such that for any n the figure takes up at least half the canvas and it also remains within the canvas
- Don't draw the numbers and the axis. They are just to visualise the construction.

Problem Statement:
Generate the first $n+1$ elements $r_{0}, r_{1}, \ldots, r_{n}$ of the Recaman's Sequence and draw the corresponding curve using turtleSim

```
Starter Code
Input Format
n
(a single integer)
Output Format
First \(n+1\) elements of the Recaman's sequence and the curve.
```


Constraints

```
\(1 \leq n \leq 1000\)
Sample Input
60
Sample Output
01362713201221112210239248254362426341184217431644154514467911378114773978387937803681358234833384 328531863087298828
More Test cases
Input and Output files
```


The output curve

Figure 19: Output Ford Circles for few n

Fun Video. The Slightly Spooky Recamán Sequence - Numberphile

8.6. Farey Sequence

Farey sequence has all rational numbers in range [$0 / 1$ to $1 / 1$] sorted in increasing order such that the denominators are less than or equal to n and all numbers are in reduced forms i.e., $2 / 4$ does not belong to this sequence as it can be reduced to $1 / 2$.
For example, $n=4$, the possible rational numbers in increasing order are $0 / 1,1 / 4,1 / 3,1 / 2,2 / 3,3 / 4,1 / 1$.

Stern-Brocot Tree

To generate the Farey Sequence, we have to first look at the Stern-Brocot Tree shown in 20.

Figure 20: The Stern-Brocot Tree for Level $1-4$ (Image by Aaron Rotenberg licensed under CC BY-SA 3.0)

In this tree, a child is given by the mediant of their parents; i.e, for child of parents $\frac{a}{c}$ and $\frac{b}{d}$ is $\frac{a+b}{c+d}$.
Some examples for parent, child are as follows $-\left(\frac{0}{1}, \frac{1}{1} \rightarrow \frac{1}{2}\right),\left(\frac{1}{1}, \frac{1}{0} \rightarrow \frac{2}{1}\right),\left(\frac{0}{1}, \frac{1}{2} \rightarrow \frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{1} \rightarrow \frac{2}{3}\right),\left(\frac{1}{1}, \frac{2}{1} \rightarrow \frac{3}{2}\right),\left(\frac{2}{1}, \frac{1}{0} \rightarrow \frac{3}{1}\right)$,
Notice that the farey sequence for corresponding n is the subset of vertices of this tree calculated upto level n.
Also, for every fraction $\frac{p}{q}$ in the farey sequence draw a circle with centre at $\left(\frac{p}{q}, \frac{1}{2 q^{2}}\right)$ and radius $\left(\frac{1}{2 q^{2}}\right)$. You may need to do some scaling to get a proper figure.
Problem Statement:
Generate the Farey Sequence for corresponding n using ideas from the Stern-Brocot Tree or otherwise and draw the circles.
Hint. Recursion!

```
Starter Code
Input Format
n

\section*{Output Format}
```

Corresponding numbers in farey sequence in p / q format with the circles.

```

\section*{Constraints}
```

$1 \leq n \leq 30 \quad$ (an integer)

```

Sample Input
7
Sample Output
0/1 \(1 / 71 / 61 / 51 / 42 / 71 / 32 / 53 / 71 / 24 / 73 / 52 / 35 / 73 / 44 / 55 / 66 / 71 / 1\)
More Test cases
Input and Output files

\section*{The output circles (Ford Circles)}


Figure 21: Output Ford Circles for few \(n\)

Interesting Observation. If the outputs take a long time then how can you make it faster?. Also, try calculating terms mathematically to get the fastest way!
Fun Video. Infinite Fractions - Numberphile
Funny Fractions and Ford Circles - Numberphile

\section*{§9. Array Leeway (2-D Arrays)}

Topics. 2-D arrays, function \& arrays and previous sections.

\subsection*{9.1. Case Converter}

\section*{Problem Statement:}

Convert a given text into different cases as mentioned below
aLtErNaTiNg CaPs Start with a lower case letter and then keep switching between upper case and lower case letters alternatingly.
Capitalize Word Capitalize the first letter of each word and convert all other letters of that word to lower case.
lower case Convert every alphabet to lower case.
Sentence case Capitalize the first letter of each sentence and convert all other letters of that sentence to lower case. Assume that the sentence only with a full stop ('.')
tOGGLE cASE Uncapitalize the first letter of each word and convert all other letters of that word to upper case
UPPER CASE Convert every alphabet to upper case
Note. In all above cases, ignore non-alphabetic characters.

\section*{Starter Code}

Input Format
sentence_length \(x \quad\) ( \(x\) is either \(a / c / 1 / s / t / u\) denoting the case to convert to or e for all cases)
sentence (entire sentence in a line the sentence length includes spaces)

Output Forma
The sentence converted into \(\times\) case
(already taken care of in Starter Code)

\section*{Constraints}
\(1 \leq\) sentence_length \(\leq 10000\)

\section*{Sample Input}

479 e
The Earth is a very small stage in a vast cosmic arena. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot.

\section*{Sample Output}
tHe EaRtH iS a VeRy SmAIL sTaGe In A vAsT cOsMiC aReNa. ThInK oF tHe EnDIEsS cRuEITiEs ViSiTeD bY tHe InHaBiTaNtS oF oNe CoRnEr Of Thls PiXeL oN tHe ScArCeLy DiStlnGulsHaBIE iNhAbltAnTs Of SoMe OtHeR cOrNeR, hOw FrEqUeNt ThEiR mlsUnDeRsTaNdInGs, HoW eAgEr ThEy ArE tO kIIL oNe AnOtHeR, hOw FeRvEnT tHelr HaTrEdS. tHiNk Of ThE rlvErS oF bLoOd SplILeD bY aLI ThOsE gEnErAIS aNd EmPeRoRs So ThAt, In GIOrY aNd TrluMpH, theY cOuLd BeCoMe ThE mOmEnTaRy MaStErS oF a FrAcTiOn Of A dOt.

The Earth Is A Very Small Stage In A Vast Cosmic Arena. Think Of The Endless Cruelties Visited By The Inhabitants Of One Corner Of This Pixel On The Scarcely Distinguishable Inhabitants Of Some Other Corner, How Frequent Their Misunderstandings, How Eager They Are To Kill One Another, How Fervent Their Hatreds. Think Of The Rivers Of Blood Spilled By All Those Generals And Emperors So That, In Glory And Triumph, They Could Become The Momentary Masters Of A Fraction Of A Dot.
the earth is a very small stage in a vast cosmic arena. think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds. think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot.

The earth is a very small stage in a vast cosmic arena. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot.
tHE eARTH iS a vERY sMALL sTAGE iN a vAST cOSMIC aRENA. tHINK oF tHE eNDLESS cRUELTIES vISITED bY tHE iNHABITANTS oF oNE cORNER oF tHIS pIXEL oN tHE sCARCELY dISTINGUISHABLE iNHABITANTS oF sOME oTHER cORNER, hOW fREQUENT tHEIR mISUNDERSTANDINGS, hOW eAGER tHEY aRE tO kILL oNE aNOTHER, hOW fERVENT tHEIR hATREDS. tHINK oF tHE rIVERS oF bLOOD sPILLED bY aLL tHOSE gENERALS aND eMPERORS sO tHAT, iN gLORY aND tRIUMPH, tHEY cOULD bECOME tHE mOMENTARY mASTERS oF a fRACTION oF a dOT.

THE EARTH IS A VERY SMALL STAGE IN A VAST COSMIC ARENA. THINK OF THE ENDLESS CRUELTIES VISITED BY THE INHABITANTS OF ONE CORNER OF THIS PIXEL ON THE SCARCELY DISTINGUISHABLE INHABITANTS OF SOME OTHER CORNER, HOW FREQUENT THEIR MISUNDERSTANDINGS, HOW EAGER THEY ARE TO KILL ONE ANOTHER, HOW FERVENT THEIR HATREDS. THINK OF THE RIVERS OF BLOOD SPILLED BY ALL THOSE GENERALS AND EMPERORS SO THAT, IN GLORY AND TRIUMPH, THEY COULD BECOME THE MOMENTARY MASTERS OF A FRACTION OF A DOT.

\subsection*{9.2. Spiral Grid}

\section*{Problem Statement:}

Generate a grid containing numbers from 1 to \(n^{2}\) such that 1 is at center and then the numbers spiral outwards from 1 in counterclockwise direction. Also, make sure each element of grid is equally spaced as shown in 22.

Note. If \(n\) is even then choose the left-bottom element from the four possible centers.

\section*{Starter Code}

\section*{Input Format}
\(t\)
(number of test cases, an integer)
\(n_{1} n_{2} \ldots n_{t}\)
( \(t\) space seperated integers for each testcase)

\section*{Output Format}

Required spiral grid of \(n_{i}^{2}\) numbers with appropriate spacing

\section*{Constraints}
\(1 \leq n_{i} \leq 100\)

\section*{Sample Input}

5
123615

\section*{Sample Output}

1
43
12
\(\begin{array}{lll}5 & 4 & 3 \\ 6 & 1 & 2\end{array}\)
\(\begin{array}{lll}612 \\ 7 & 8\end{array}\)
\(\begin{array}{llllll}36 & 35 & 34 & 33 & 32 & 31\end{array}\)
\(\begin{array}{llllll}17 & 16 & 15 & 14 & 13 & 30\end{array}\)
\(\begin{array}{llllll}18 & 5 & 4 & 3 & 12 & 29\end{array}\)
\(\begin{array}{llllll}19 & 6 & 1 & 2 & 11 & 28\end{array}\)
\(\begin{array}{llllll}20 & 7 & 8 & 9 & 10 & 27\end{array}\)
212223242526
\(\begin{array}{lllllllllllllll}197 & 196 & 195 & 194 & 193 & 192 & 191 & 190 & 189 & 188 & 187 & 186 & 185 & 184 & 183\end{array}\)
\(\begin{array}{lllllllllllllllll}198 & 145 & 144 & 143 & 142 & 141 & 140 & 139 & 138 & 137 & 136 & 135 & 134 & 133 & 182\end{array}\)
\(\begin{array}{llllllllllllllll}199 & 146 & 101 & 100 & 99 & 98 & 97 & 96 & 95 & 94 & 93 & 92 & 91 & 132 & 181\end{array}\)
\(\begin{array}{llllllllllllll}200 & 147 & 102 & 65 & 64 & 63 & 62 & 61 & 60 & 59 & 58 & 57 & 90 & 131 \\ 180\end{array}\)
\(\begin{array}{lllllllllllllll}201 & 148 & 103 & 66 & 37 & 36 & 35 & 34 & 33 & 32 & 31 & 56 & 89 & 130 & 179\end{array}\)
\(\begin{array}{llllllllllllllll}202 & 149 & 104 & 67 & 38 & 17 & 16 & 15 & 14 & 13 & 30 & 55 & 88 & 129 & 178\end{array}\)
\begin{tabular}{lllllrrrrrrrr}
202 & 149 & 104 & 67 & 38 & 17 & 16 & 15 & 14 & 13 & 30 & 55 & 88 \\
203 & 150 & 105 & 68 & 39 & 18 & 5 & 4 & 3 & 12 & 29 & 54 & 87 \\
128 & 177 \\
\hline
\end{tabular}
\(\begin{array}{llllllllllllll}204 & 151 & 106 & 69 & 40 & 19 & 6 & 1 & 2 & 11 & 28 & 53 & 86 & 127 \\ 205 & 152 & 107 & 70 & 41 & 20 & 7 & 8 & 9 & 10 & 27 & 52 & 85 & 126 \\ 175\end{array}\)
\(\begin{array}{llllllllllllll}206 & 153 & 108 & 71 & 42 & 21 & 22 & 23 & 24 & 25 & 26 & 51 & 84 & 125 \\ 207 & 154 & 109 & 72 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 83 & 124 \\ 173\end{array}\)
\begin{tabular}{lllrrrrrrrrrrr}
208 & 155 & 110 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 & 81 & 82 & 123 \\
\hline
\end{tabular}
\(\begin{array}{lllllllllllllll}209 & 156 & 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 171 \\ 210 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 & 169 & 170\end{array}\)
\(\begin{array}{lllllllllllllllllllllllll}21 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 & 224 & 225\end{array}\)
Figure 22: Sample Output

\section*{More Test cases}

Input and Output files

\subsection*{9.3. Minesweeper}

In the game of Minesweeper, there is an \(m \times n\) board which has exactly \(k\) mines hidden. The aim is to "clear" the board by clicking on cells with no mine and avoiding clicking on any mine. By clicking on a cell with no mine, the player gets the number of neighbouring mines of that cell by the below rule
- If the cell \(c\) is not at the boundary (23a) then it is the number of mines in a \(3 \times 3\) square with that centre \(c\).
- If the cell \(c\) is at the boundary (23b, 23b) even then \(c\) cell is considered as the centre of \(3 \times 3\) square; but, only some of the cells of the constructed square will lie inside the board.


Figure 23: Minesweeper - Explanation

\section*{Problem Statement:}

Calculate the neighbour count for all cells except at the mines where you have to output the character ' M '.

\section*{Starter Code}

\section*{Input Format}
\(m n\)
(space seperated integer pair corresponding to number of rows and columns)
\(k \quad x_{1} y_{1} \quad \cdots \quad x_{k} y_{k} \quad(2 k+1\) space seperated integers corresponding to number of mines and the \(x, y\) co-ordinates of all mines (1-indexed))

\section*{Output Format}
\(m \times n\) matrix \(A\), where \(a_{i j}= \begin{cases}\text { ' } \mathrm{M} \text { ' } & \text { if there is a mine at }(i, j) \\ \text { number of neighbouring mines of the cell }(i, j) & \text { otherwise }\end{cases}\)

\section*{Constraints}
\(1 \leq m, n \leq 50,1 \leq k \leq m \times n\)
\(1 \leq x \leq m, 1 \leq y \leq n\)
\(0 \leq a_{i j} \leq 8\) or \(a_{i j}={ }^{\prime} \mathrm{M}^{\prime}\).

\section*{Sample Input}

44
\(\begin{array}{llllll}5 & 11 & 22 & 33 & 34 & 44\end{array}\)

\section*{Sample Output}

M 210
2 M 32
12 M M
013 M

\section*{More Test cases}

Input and Output files
Note. Try implementing the complete minesweeper game :)

\subsection*{9.4. Gray Code}

A gray code is a rearrangement of binary numbers such that any 2 consecutive numbers differ only in 1 bit.
A simple way to generate n -bit gray code is given below
- Start with an array of 2 numbers \(A=\{0,1\}\)
- Repeat the below steps \(n-1\) times
- Reverse the array \(A\) to get array \(A^{\prime}\) and then append \(A^{\prime}\) to \(A\).
- Append 0 to the left of the first half elements of \(A\) and

Append 1 to the left of the second half elements of \(A\).


Figure 24: Gray Code - Generation

\section*{Problem Statement:}

For a given \(n\), generate its corresponding Gray Code (i.e. first \(2^{n}\) elements).

\section*{Starter Code}

\section*{Input Format}
\(n\)

\section*{Output Format}
\(2^{n}\) numbers denoting Gray Code

\section*{Constraints}
\(1 \leq n \leq 10\)

\section*{Sample Input}

3

\section*{Sample Output}

000
001
011
010
110
111
101
100

\section*{More Test cases}

Input and Output files

\section*{§10. Array Powerplay (More Arrays or Recursion?)}

Topics. Recursion \& arrays and previous sections.

\subsection*{10.1. Determinant of a Matrix}

For a matrix \(A \in \mathbb{Z}^{n \times n}\) (zero-based indexing) and for a \(i \in\{0,1, \ldots, n-1\}\), the determinant of \(A(\operatorname{det}(A))\) is \(\operatorname{det}(A)=\sum_{j=0}^{n-1}(-1)^{i+j} a_{i j} M_{i j} \quad M_{i j}\) is the det of the matrix obtained by removing the \(i^{\text {th }}\) row and \(j^{\text {th }}\) column of \(A\).

\section*{Problem Statement:}

Find the determinant of given matrix \(A\) using the above formula (called as Laplace Expansion).
```

Starter Code
Input Format
t (number of test cases, an integer)
ni
a0,0
al,0
a}\mp@subsup{a}{\mp@subsup{n}{i}{}-1,0}{0}\quad\mp@subsup{a}{\mp@subsup{n}{i}{}-1,1}{}\quad···.\quad\mp@subsup{a}{\mp@subsup{n}{i}{}-1,\mp@subsup{n}{i}{}-1}{
((n

```

\section*{Output Format}
\(\operatorname{det}(A)\)
(space seperated integers for each test case)

\section*{Constraints}
\(1 \leq n_{i} \leq 10,-1000 \leq a_{i, j} \leq 1000\)

\section*{Sample Input}

5
1
7
2
43
12
3
543
612
789
4
1111
13927
1636216
1101001000
5
4-1-1-1-1
-1 2 -1 00
-1 -1 200
-1 000 - 1
-1 00 -1 3

\section*{Sample Output}
\(\begin{array}{lllll}7 & 5 & -72 & 7560 & 9\end{array}\)
Fun Video. The Vandermonde Matrix and Polynomial Interpolation - Dr. Will Wood

\subsection*{10.2. Tower of Hanoi}

Tower of Hanoi is a mathematical puzzle with three rods \((A, B, C)\) and \(n\) disks on left rod ( \(A\) ) with in decreasing order of their radius from top to bottom
The objective of the puzzle is to move the entire stack of disks to the rightmost rod \((C)\), obeying the following simple rules,
- Only one disk can be moved at a time.
- Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack; i.e., a disk can only be moved if it is the uppermost disk on a stack.
- No disk may be placed on top of a smaller disk.

Check any of the linked videos below for more information.
Problem Statement: For a given \(n\), output the sequence of steps to be taken in the following format:
Disk <disk-number> from <rod-name> to <rod-name>.
Solve the problem with recursion and without recursion as well :).
\begin{tabular}{|c|c|}
\hline Starter Code & \\
\hline \multicolumn{2}{|l|}{Input Format} \\
\hline \(t\) & (number of test cases, an integer) \\
\hline \(n_{1} n_{2} \ldots n_{t}\) & ( \(t\) numbers) \\
\hline \multicolumn{2}{|l|}{Output Format} \\
\hline Corresponding steps till completetion & (each step on a new line for each test case) \\
\hline \multicolumn{2}{|l|}{Constraints} \\
\hline \(1 \leq n_{i} \leq 20\) & (integers) \\
\hline
\end{tabular}
Sample Input
1234

Sample Output
Disk 1 from A to B
Disk 1 from A to \(C\)
Disk 2 from \(A\) to \(B\)
Disk 1 from \(C\) to \(B\)

Disk 1 from \(A\) to \(B\)
Disk 2 from A to C
Disk 1 from \(B\) to \(C\)
Disk 3 from \(A\) to \(B\)
Disk 1 from \(C\) to \(A\)
Disk 2 from \(C\) to \(B\)
Disk 1 from \(A\) to \(B\)

Disk 1 from \(A\) to \(C\)
Disk 2 from \(A\) to \(B\)
Disk 1 from \(C\) to \(B\)
Disk 3 from A to C
Disk 1 from B to A
Disk 2 from \(B\) to \(C\)
Disk 1 from A to C
Disk 4 from \(A\) to \(B\)
Disk 1 from \(C\) to \(B\)
Disk 2 from \(C\) to \(A\)
Disk 1 from B to A
Disk 3 from C to B
Disk 1 from \(A\) to \(C\)
Disk 2 from \(A\) to \(B\)
Disk 1 from \(C\) to \(B\)

\section*{More Test cases}

Input and Output files
Fun Video. Binary, Hanoi and Sierpinski, part 1, part 2-3Blue1Brown
Towers of Hanoi: A Complete Recursive Visualization - Reducible
The ultimate tower of Hanoi algorithm - Mathologer

\subsection*{10.3. Quicksort}

Quicksort is a divide and conquer algorithm like merge sort discused in class. It first divides the input array into two smaller sub-arrays: the low elements and the high elements. It then recursively sorts the sub-arrays. Precisely,
- Pick an element, called a pivot, from the array
- Reorder the array so that all elements with values less than the pivot come before the pivot, while all elements with values greater than the pivot come after it (equal values can go either way). After this partitioning, the pivot is in its final position (relative to other elements).
- Recursively apply the above steps to the sub-array of elements with smaller values and separately to the sub-array of elements with greater values. The base case of the recursion are arrays of size zero or one, which are in order by definition, so they never need to be sorted

Note. The pivot selection and partitioning steps can be done in several different ways; the algorithm's performance greatly varies with implementation schemes.


Figure 25: Quicksort Runthrough (Image by Znupi, Public domain, via Wikimedia Commons)

\section*{Problem Statement:}

Sort the given array using Quicksort. Use Lomuto partition scheme, i.e. take the last element of array as pivot.
Note. You are not provided with the size of array. Learn the way to do it! If you give up then go through procedure in starter code and understand it thoroughly.
Starter Code
Input Format
\(t\)
\(a_{0} a_{1} a_{2} \cdots a_{n_{i}-1}\)
Output Format
Sorted Array
Constraints
\(1 \leq n_{i} \leq 1000,-100000 \leq a_{i} \leq 100000\)

Fun Video. What's the fastest way to alphabetize your bookshelf? - Chand John - TED-Ed

\section*{§11. Programming Expositions}

Topics. All previous sections.

\subsection*{11.1. Newton Interpolation}

For a given sequence of numbers \(\left\{a_{0}, \ldots, a_{n-1}\right\}\), we define \(\Delta^{k}\) inductively as follows
- \(\Delta^{0}=\left\{a_{0}, \ldots, a_{n-1}\right\}\)
- If \(\Delta^{i}=\left\{b_{0}, b_{1}, \ldots, b_{n-i-2}, b_{n-i-1}\right\}\) then \(\Delta^{i+1}=\left\{b_{1}-b_{0}, \ldots, b_{n-i-1}-b_{n-i-2}\right\}\); i.e., difference of succesive terms gives the next sequence. Also, we treat \(\Delta^{k}\) as an array with \(i^{\text {th }}\) index as \(\Delta^{k}[i]\).
Notice, that number of terms reduces by 1 after each iteration. Hence \(\Delta^{n-1}\) has only 1 term and we stop.
Now, using these \(\Delta^{i}\) 's, we can constuct a polynomial \(f\) such that \(f(i)=a_{i}\) for \(i=\{0,1, \ldots, n-1\}\). This process is called interpolation and the formula for \(f\) is given below.
\[
\begin{equation*}
f(x)=\sum_{k=0}^{n-1}\binom{x}{k} \Delta^{k}[0]=\sum_{k=0}^{n-1} \frac{(x)_{k}}{k!} \Delta^{k}[0] \quad \text { where }(x)_{0}=1 \text { and }(x)_{k}=x(x-1) \cdots(x-(k-1)) \tag{29}
\end{equation*}
\]

An example from wikipedia,
\[
\begin{align*}
& \begin{array}{c|ccc}
x & f=\Delta^{0} & \Delta^{1} & \Delta^{2}
\end{array} \quad f(x)=\Delta^{0} \cdot \frac{(x)_{0}}{0!}+\Delta^{1} \cdot \frac{(x)_{1}}{1!}+\Delta^{2} \cdot \frac{(x)_{2}}{2!} \\
& 1 \begin{array}{lll}
2 & \underline{0} & \underline{2}
\end{array} \quad=2 \cdot 1+0 \cdot \frac{x}{1}+2 \cdot \frac{(x)(x-1)}{2}  \tag{30}\\
& =2+(x)(x-1)
\end{align*}
\]

\section*{Problem Statement:}

For a given sequence \(\left\{a_{0}, \ldots, a_{n-1}\right\}\), find its interpolated polynomial and predict the next term \(a_{n}=f(n)\).
```

Starter Code

```

\section*{Input Format}
```

t
(number of test cases, an integer)
$n_{i} \quad a_{0} \quad a_{1} \ldots a_{n_{i}-1}$
($n_{i}+1$ space seperated integers for each testcase)

```

\section*{Output Format}
\(f\left(n_{i}\right)\), followed by expansion of \(f(x) \sum_{k=0}^{n-1} \frac{x_{k}}{k!} \Delta^{k}[0]\), ignoring \(\Delta^{i}[0]=0\) terms and \(\Delta^{i}[0]= \pm 1\) coefficients.

\section*{Constraints}
\(1 \leq n_{i} \leq 20,-1000 \leq a_{i} \leq 1000\)

\section*{Sample Input}

4
3224
41234
\(7 \quad 3141592\)
\(9 \quad 124816315799163\)

\section*{Sample Output}

8 2(x)_0/0! + 2(x)_2/2!
5 (x)_0/0! + (x)_1/1!
\(453(x) \_0 / 0!-2(x) \_1 / 1!+5(x) \_2 / 2!-11(x) \_3 / 3!+24(x) \_4 / 4!-44(x) \_5 / 5!+60(x) \_6 / 6!\)
256 ( \(x\) )_0/0! + (x)_1/1! + (x)_2/2! + (x)_3/3! + (x)_4/4!
Fun Video. Why don't they teach Newton's calculus of 'What comes next?' - Mathologer

\subsection*{11.2. ISBN}

You may have wondered about the 10 (or 13) digits numbers on the back of every book. They are ISBN, which stands for International Standard Book Number and is used for uniquely identifying books and other publications (including e-publications). Go find the ISBN of your favourite book! :)
Let us consider ISBN 10 ( 10 digit numbers), an old format that got replaced by ISBN 13. The first 9 digits contain information about the geographical region, publisher and edition of the title. The last digit is a check digit used for validating the number. Let the number be \(x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8} x_{9} x_{10}\), then the check digit \(x_{10}\) is chosen such that the checksum \(=10 x_{1}+9 x_{2}+8 x_{3}+7 x_{4}+6 x_{5}+5 x_{6}+4 x_{7}+3 x_{8}+2 x_{9}+1 x_{10}\) is a multiple of 11 . This condition is succinctly represented as below:
\[
\begin{equation*}
\left(\sum_{i=1}^{10}(11-i) x_{i}\right) \% 11=0 \tag{31}
\end{equation*}
\]

\section*{Generation of check digit (example)}

If the first nine digits are 812913572 then \(8 \times 10+1 \times 9+2 \times 8+9 \times 7+1 \times 6+3 \times 5+5 \times 4+7 \times 3+2 \times 2=234\). So if \(x_{10}=8\), then the checksum is divisible by 11 . Hence, the ISBN is 8129135728 .

Note. It as possible that the calculated check digit is 10 as we can get any remainder from 0 to 10 when divided by 11. But when the remainder is 10 , as is not a single digit, appending 10 to ISBN will make its length 11. To avoid such cases, the letter ' \(X\) ' is used to denote check digit \(=10\).

\section*{Problem Statement:}

Recover and output the missing digit from a given valid ISBN 10 code with a digit erased.
The missing digit can be any \(x_{i}(1 \leq i \leq 10)\).

\section*{Starter Code}

\section*{Input Format}
\(t\) (number of test cases, an integer)
10 characters each either representing a digit (0-9) or a missing number ('?').
(for each testcase)
The last character (check digit) can also be ' X '.

\section*{Output Format}

A single digit, that is to be placed at '?' position to make the given ISBN valid.
(space seperated)
If the missing integer is 10 then, the output should be ' \(X\) '

\section*{Constraints}

It is always possible that a unique ISBN exists. (Why?)

\section*{Sample Input}

9
81291?5728
30303935?7
366205414?
366?054140
\(05 ? 0764845\)
? 590764845
?43935806X
933290152?
9332?0152X

\section*{Sample Output}
\(3702900 \times 9\)
Fun Video. 11.11.11 - Numberphile

\subsection*{11.3. Vigenére Cipher}

Vigenére Cipher is an cryptographic technique used for encryption and decryption of alphabetic texts. The process is done letter-by-letter.

\section*{Encryption}
- Generate a message (also called as a plaintext) and an empty ciphertext.
- Select a key; i.e., a string of alphabets. Keep repeating the key until it is as long as message.
- Iterate through the message and key simulataneously, to get current message alphabet and key alphabet.
- Now from the table 26, insert into ciphertext the alphabet corresponding to message alphabet as row and key alphabet as column.

\section*{Decryption}
- In this case, key and ciphertext are known.
- Iterate through the key and ciphertext simulataneously, to get current key letter and ciphertext letter.
- Now from the table 26 , find the ciphertext letter in the column corresponding to the current key letter. The row of ciphertext letter gives plaintext letter.

Note. The encryption and decryption hinges on the fact that the key is kept secret and known only to people encrypting and decrypting the messages. With the knowledge of key, decryption is "easy" but without key it is "hard".
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & B C & & & & & & & & & & M & & 0 & & Q & & S & S & U & V & W & & & \\
\hline A & A & & C & & D E & F & G & G & 1 & J & K & L & M & N & O & P & Q & R & S & T & U & UV & W & X & Y & \[
Z
\] \\
\hline B & B & & C D & & E & G & & H & J & & & M & N & O & P & & R & S & T & U & & W & & Y & Z & A \\
\hline C & C & & E & & G & G H & & 1 J & K & L & M & N & NO & P & Q & R & S & T & U & JV & W & W & Y & Z & A & B \\
\hline D & D & & E F & & G H & 1 & & , & L & M & M N & O & P & Q & R & S & T & U & \(V\) & V W & X & X Y & Z & A & B & C \\
\hline E & E & & F G & & H & J & & , & M & N & NO & P & Q & R & S & T & U & & W & W & & Z & A & B & C & D \\
\hline F & F & & G H & & 1 J & K & & M & N & O & & & R & S & T & U & U V & & & X Y & & A & B & C & D & E \\
\hline G & G & & H I & & K & L & M & M N & O & P & Q & R & S & T & U & & W & X & X Y & Z & A & B & C & D & E & F \\
\hline H & H & & 1 & & K & M & & NO & P & Q & Q R & R & T & U & V & W & W X & & & A & B & C & D & E & F & G \\
\hline 1 & 1 & & J K & & L M & N & & - & Q & R & R S & T & U & V & V & & X Y & & Z A & A B & C & D & E & F & G & H \\
\hline J & & & K L & & \(\mathrm{M} N\) & O & & Q & R & & T & TU & V & W & W X & & Z & & A B & C & & E & F & G & H & \\
\hline K & K & & L M & & N O & P & & Q R & S & T & TU & V & W & X & X Y & Z & A & B & C & C D & E & F & G & H & & \\
\hline L & L & & M N & & O & Q & R & S & T & U & & & W X & Y & Y & A & B & C & D & E & F & G & H & 1 & & K \\
\hline M & M & & NO & & P Q & R & & S T & U & & & & & & A & B & C & & & F & & H & & J & K & L \\
\hline \[
\mathrm{N}
\] & N & & O P & & Q R & S & & U & & W & W & & Z & A & B & & D & E & F & G & & & & K & & \[
\mathrm{M}
\] \\
\hline O & 0 & & P Q & & R S & T & & UV & W & & X Y & Y & A & B & C & D & E & & G & G H & & & K & L & M & \[
\mathrm{N}
\] \\
\hline P & P & & Q R & & S & U & & \(\checkmark\) W & X & & & & B & C & C & & F & & G H & & & K & L & M & \[
\mathrm{N}
\] & \[
0
\] \\
\hline Q & Q & & R S & & T U & V & & W X & X Y & & Z A & B & C & D & E & & & H & & & K & L & M & N & & P \\
\hline R & R & & S T & & U V & W & & X Y & Z & & A B & C & D & E & F & & H & & & K & & M & N & O & P & Q \\
\hline S & S & & TU & & V W & W X & & Y Z & A & & & & E & F & & & & & & L & & & O & P & Q & \[
R
\] \\
\hline & T & & U V & & W X & Y & & Z A & B & & C D & E & F & & G & & & & & M & & NO & P & Q & \[
R
\] & \[
\mathrm{S}
\] \\
\hline U & U & & V W & & X Y & Z & & A B & C & & E & F & G & H & H & & J K & & M & M & O & P & Q & R & S & T \\
\hline & & & W X & & Z & A & & B & D & & & & & & & & & & & NO & & & & R & & U \\
\hline & W & & X Y & & Z A & A & & C D & E & F & G & G & H 1 & & K & & M & & N 0 & P & & Q & S & T & U & V \\
\hline & X & & Z & & A B & C & D & E & F & & G H & H & 1 J & K & L & M & N & O & P & Q & & S & T & & & \\
\hline & & & Z A & & B C & D & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Figure 26: The Vigenere square (Image by Matt Crypto, Public domain, via Wikimedia Commons)

Problem Statement:
Implement encryption and decryption function as stated above:
```

Starter Code
Input Format
t
ki pi
K_ ...K}\mp@subsup{K}{\mp@subsup{k}{i}{}}{
P
(number of test cases, an integer) (size of key and plaintext for each testcase)
Output Format
Ciphertext
(Verify decryption manually for decrypting the generated ciphertext and comparing with plaintext)

```

\section*{Constraints}
```

$1 \leq k_{i}, p_{i} \leq 1000, K_{i}, P_{i}$ are CAPITAL LETTERS.

```
```

Sample Input

```
Sample Input
6
6
513
513
ERWIN
ERWIN
ATTACKONTITAN
ATTACKONTITAN
16 39
16 39
LEOPOLDKRONECKER
LEOPOLDKRONECKER
GODMADETHEINTEGERSALLELSEISTHEWORKOFMAN
GODMADETHEINTEGERSALLELSEISTHEWORKOFMAN
17136
17136
STUARTMILNERBARRY
STUARTMILNERBARRY
IDONOTIMAGINETHATANYWARSINCECLASSICALTIMESIFEVERHASBEENFOUGHTINWHICHONESIDEREADCONSISTENTLYTHEMAINMILITARYAND
IDONOTIMAGINETHATANYWARSINCECLASSICALTIMESIFEVERHASBEENFOUGHTINWHICHONESIDEREADCONSISTENTLYTHEMAINMILITARYAND
NAVALINTELLIGENCEOFTHEOTHER
```

NAVALINTELLIGENCEOFTHEOTHER

```
```

15201
BERTRANDRUSSELL
MATHEMATICSPOSSESSESNOTONLYTRUTHBUTASUPREMEBEAUTYCOLDANDAUSTERELIKETHATOFSCULPTUREWITHOUTTHEGORGEOUSTRA
PPINGSOFPAINTINGORMUSICYETSUBLIMELYPUREANDCAPABLEOFASTERNPERFECTIONSUCHASONLYTHEGREATESTARTCANSHOW
15382
BERTRANDRUSSELL
IOUGHTTOCALLMYSELFANAGNOSTICBUTFORALLPRACTICALPURPOSESIAMANATHEISTIDONOTTHINKTHEEXISTENCEOFTHECHRISTIANGODA
NYMOREPROBABLETHANTHEEXISTENCEOFTHEGODSOFOLYMPUSORVALHALLATOTAKEANOTHERILLUSTRATIONNOBODYCANPROVETHATTH
EREISNOTBETWEENTHEEARTHANDMARSACHINATEAPOTREVOLVINGINANELLIPTICALORBITBUTNOBODYTHINKSTHISSUFFICIENTLYLIKELYTO
BETAKENINTOACCOUNTINPRACTICEITHINKTHECHRISTIANGODJUSTASUNLIKELY
938
CARLSAGAN
THEEARTHISAVERYSMALLSTAGEINAVASTCOSMICARENATHINKOFTHEENDLESSCRUELTIESVISITEDBYTHEINHABITANTSOFONECORNEROFTHIS
PIXELONTHESCARCELYDISTINGUISHABLEINHABITANTSOFSOMEOTHERCORNERHOWFREQUENTTHEIRMISUNDERSTANDINGSHOWEAGERTHEY
ARETOKILLONEANOTHERHOWFERVENTTHEIRHATREDSTHINKOFTHERIVERSOFBLOODSPILLEDBYALLTHOSEGENERALSANDEMPERORSSOTHA
TINGLORYANDTRIUMPHTHEYCOULDBECOMETHEMOMENTARYMASTERSOFAFRACTIONOFADOT

```

\section*{Sample Output}

EKPIPOFJBVXRJ

\section*{RSRBOOHDYSVRVOKVCWOAZPOCVWFXJOAFCOCUALQ}

AWINFMUULTMEFTYRRSGSWRKEQYPITMAJJGUTFTZFQATSIMFRYRQTXYNWHGOSGMEXHZTFGGYSZWQZPNHTPNJZQLXHTCRFPPZEZOMZCG LTLYRGPVLIECJNKVJDBAEEVQWQGLVPTYVP

NEKAVMNWZWKHSDDFWJXJNBWFHDQXCFULSNKAFXGLWEIMPBYKRTOYGRHVSYDEFVVEZKRWYULGJDNVPGMLRRZZNZGYEEIIXHIGRRLMLJ EAAJRXLFFCDZHLARRZSQLLZCLHKMMTPTXFPPILRRDEXUSTLMMIFYRSGHIHHWVQPDXZHESHFYUKGRWJULVZIENWVMLSVENBRJAFW

JSLZYTGRTUDDQJDFPWTEATQFMLAGMFUJFKRLYSIUULMNLMTLKGOFHJCSEEYLULVBJTVGFHGLXSTOOKAVEKLJNWFGPZGXYXTHELJNASRR ZEEERDOEHGLGTEMWFXYTETUHVRAKXPYDIFYKHRJFXKGJZWZQGNJOEYRFZSPWLUSKTBENQFNZWVTWMYJMIAGLFHFGFZOZGRGGRBYVN ZSXESFVVBJNBWSYLOIPYULVXRRGKRHVEECDBGYBEAGHRJGLVPGPPMBEGVQRHWDPTAUMTTCOEEZNTMXYZCSURKHVQBMLZMDDVJWBTIR QKFQDMVPMCKHSEGDBYFAREZBGTHLNGLEJJSGETDIZMYIANKBWULCTTXZTEGBGAOKLEDFOPZDVLL

VHVPSRZHVUAMPJYYMNNLJESGKIACVRDLCUSZKCRCWNGTUKNBZXTNERPDCPKSIRHGLKTWSBIFKTVOTYZHRKNYLTIZAAVSFQGNKCBTNVCG FZHVUPZIWLUNGJEJNSRIEYADZDLITGHKSYLTLKIAJASTLATTFQFJZEEUTUGRTZJNKRUQWWCWQAEAVTYPARSIFWNUPJSZAAFIERKHUWRCGV CLHKYNTEKZCIRLBPERYGTNEEJONQWRBEAVTYPARNAGTEUDLHONXQFKSWROVRTSFQTLUOQUPZWDEJBLCLCEZOYETGNVCSLYAAFEDAWR URFUOKSSTONTNOIJSNJTEKUDAZTNELEOLWVBKCBOEKSWMUMRPTRCQMGSGGRJZXALRNETZZFOLAQQT

Fun Video. Cracking the Cipher Challenge - Simon Singh - GOTO 2016
The Science of Secrecy - Simon Singh

\section*{A Challenge}

Can you decrypt this ciphertext based on Vigenére Cipher? Key is not provided :)
KHGPYVJLCJAPEPYYOYUGCWJGNVOIUOPBGDOTZCMXGDCVGCZIPOVDIQXGZCZYPLUHDGYGCQPHWCBVHUUSHPWQENKYXOTTUMOUBWJK OPMVKMLHGFGYHGFGYCLEUACLEUAWQENKHVZTVPGSVOYJOEVPGBGKBKCVYUEUUOYIYVABCDKKCQDCANJOEVJACJVJVYNPYHYTOCOIQB NJSPRNJSUPMUYOLNJSPNSQEVOCPUVOCUSUIUFDJPMVRKZWJSEHHGBAOYUNQUYYYTZYVRCAVKVNIICBFHLGIQBNGVNPHIWGABCDCTUPT WZNJKRWYPCVVZCVNSCMOVOUVXQOYQBEOYUDTHNGNKADKWOFBGNGMYEKVLXVRTVOIRCZOPBQVZCXFPMCFGKBKWCUXKCJVONNPABC FGPNQYMOCOSPAIOIQDHHSTTQJKVDUUSVOCPUKUAJONSHGFGYWJKPNYJONSHGFGYWJKPNYGFGYMKXELBGGCZHKXGHFYKAZNJOUHGGM QBFFXVRYGZJPMJKPKMQEVVZVRGJUURFYUYOTIOVXQAIWBLPGOIEVONNPAVGZTLWKYWZDKWOFMVOCSCPQVOYOLNPHFKPKBGQGAMVYD LUNKYFYTGJHNCCKJELYMLCURQBFFFGZNQZRLXJSODBGXKOUFDJLWJKPJYCXFFIWIQBBCFGAIUDQWBKW

Also, the above sample input are some popular quotes are reiterated below for readability.
God made the integers, all else is the work of man

I do not imagine that any war since classical times, if ever, has been fought in which one side read consistently the main military and naval intelligence of the other.
Stuart Milner-Barry, Bletchley Park cryptanalyst
Mathematics, rightly viewed, possesses not only truth, but supreme beauty-a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature, without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show

I ought to call myself an agnostic; but, for all practical purposes, I am an atheist. I do not think the existence of the Christian God any more probable than the existence of the Gods of Olympus or Valhalla. To take another illustration: nobody can prove that there is not between the Earth and Mars a china teapot revolving in an elliptical orbit, but nobody thinks this sufficiently likely to be taken into account in practice. I think the Christian God just as unlikely.

\section*{Bertrand Russell, Russell's teapot}

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds. Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that help will come from elsewhere to save us from ourselves. The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the Earth is where we make our stand. It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we've ever known.

\subsection*{11.4. Linear Feedback Shift Register}

How does a computer generate truly random numbers? Computers are deterministic which means the actions it takes are predetermined. So it can't generate truly random numbers unless they observe some unpredictable data like noise. But we can still generate "seemingly" random numbers called pseudorandom numbers. One such approach is using Linear Feedback Shift Registers (LFSRs).

\section*{An LFSR is defined by}
- \(n\) state variables \(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\) (collectively called as the state of LFSR ("register")) with their initial values (called taps) \(t_{1}, t_{2}, t_{3}, \ldots, t_{n}\left(t_{i}\right.\) is 0 or 1 ).
- A feedback polynomial \(c_{1} x^{0}+c_{2} x^{1}+c_{3} x^{2}+\cdots+c_{n} x^{n-1}+x^{n}\) ( \(c_{i}\) is 0 or 1 ) which updates the state of LFSR as follows
- \(\operatorname{next}\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}\right)=\left(x_{2}, x_{3}, x_{4}, \ldots, x_{n}\right)\) - this is called "shifting" next value of \(x_{1}\) becomes \(x_{2}\), next value of \(x_{2}\) becomes \(x_{3}\), and so on.
- \(\operatorname{next}\left(x_{n}\right)=c_{1} x_{1} \oplus c_{2} x_{2} \oplus \cdots \oplus c_{n-1} x_{n-1} \oplus c_{n} x_{n}\) where \(\oplus\) is the binary xor operator - this is the "linear feedback"
- The output bit is \(x_{1}\)

For example, consider a 3-bit LFSR as shown in 27a. Here, \(\left(t_{1}, t_{2}, t_{3}\right)=(1,1,0)\) and \(\left(c_{1}, c_{2}, c_{3}\right)=(1,0,1)\).
Next, the sequence generation is shown in 27 b . Here, the initial state \((1,1,0)\) becomes \((1,0,1 \oplus 0)=(1,0,0)\) and with similar updates, eventually the sequence repeats when the state becomes \((1,1,1)\) as next state will be \((1,1,1 \oplus 1)=(1,1,0)\).

(b) The Generated Sequence is 11001001 repeating (follow the arrows)

Figure 27: Linear Feedback Shift Register - Working

\section*{Problem Statement:}

A property of \(n\) bit LFSR is that the output sequence it generates will start repeating in at most \(2^{n-1}\) iterations called its period \({ }^{5}\)
Your task is to simulate an LFSR with a given initial state and feedback polynomial until it repeats and find its period \({ }^{6}\) in the process.
```

Starter Code
Input Format
t
(number of test cases, an integer)
ni}\quad\mp@subsup{t}{1}{}\mp@subsup{t}{2}{}\cdots\mp@subsup{t}{\mp@subsup{n}{i}{}}{}\quad\mp@subsup{c}{1}{}\mp@subsup{c}{2}{}\cdots\cdots\mp@subsup{c}{\mp@subsup{n}{i}{}}{
($2 n_{i}+1$ space seperated integers for each testcase)

```

\section*{Output Format}
the output sequence generated by the given LFSR followed by the period of this output sequence
(each iteration on a newline)

\section*{Constraints}
\(1 \leq n_{i} \leq 15\)
\(t_{i}\) is either 0 or 1 and \(c_{1}=1^{7}\), other \(c_{i}\) are either 0 or 1 (The LFSR will repeat from the beginning)
```

Sample Input
1 1 1
10 10
11}1
11 11
110 101
10100 10010
71100000 1000001

```

\section*{Sample Output}

11
102
11
1103
11010017
1010010000101011101100011111001
11000001000000111111101010100110011101110100101100011011110110101101100100100011
10000101111100101011100110100010011110001010000127

\section*{More Test cases}

Input and Output files
Fun Video. Random Numbers with LFSR (Linear Feedback Shift Register) - Computerphile
\({ }^{5}\) Interestingly, there also exists a feedback polynomial which achieves this maximum period for every \(n\).
\({ }^{6}\) Is there a way to get the period of the sequence using just the feedback polynomial and without actually calculating sequence? The basis of this problem lie in the fascinating area of mathematics known as Abstract Algebra!
\({ }^{7}\) This makes sure that the sequence will repeat from the beginning and will not have any non-periodic part. For example, \(110101010 \ldots\) ('10' repeating) is not possible if \(c_{1}=1\).

\section*{§12. Fractal Fun}

Topics. Everthing but not actually everything if you think hard enough :)

\subsection*{12.1. L-Systems}

Lindenmayer system, shortly L-system is a recursive system to generate self-similar patterns. Simply put, it contains variables, constants, an axiom and rules. In fact, we have already seen its example here. So, let's take that as a reference. We can generate the Thue-Morse Sequence using the below L-System variables 0,1
constants none
axiom 0 (start with 0 )
rules \(0 \rightarrow 01,1 \rightarrow 10\) (replace 0 by 01 in next step and 1 by 10)
This produces the following sequences
Iterate 00
Iterate 101
Iterate 20110
Iterate 301101001
Iterate 40110100110010110 and so on
12.1.1 Dragon Curve
variables \(F, G\)
constants +-
axiom \(F\)
rules \(\mathrm{F} \rightarrow \mathrm{F}+\mathrm{G}, \mathrm{G} \rightarrow \mathrm{F}-\mathrm{G}\)
The generated sequence is \(F+G+F-G+F+G-F-G+F+G+F-G-F+G-F-G\).... Consider \(F\), \(G\) as moving forward and \(+(-)\) as turning left (right) by \(90^{\circ}\).
Problem Statement:
Draw the corresponding curve using turtleSim with appropriate scaling such that it roughly takes same width and height for all iterates

\section*{Starter Code}


Figure 28: Dragon Curve iterates
12.1.2 Sierpiński Arrowhead Curve
variables \(A, B\)
constants +-
axiom A
rules \(A \rightarrow B-A-B, B \rightarrow A+B+A\)
Try generating this. Here, \(A, B\) denote moving forward and \(+(-)\) denote turning left (right) by \(60^{\circ}\).
Problem Statement:
Again, draw the corresponding curve using turtleSim with appropriate scaling such that it roughly takes same width and height for all iterates.

\section*{Starter Code}


Figure 29: Sierpiński Arrowhead Curve for even iterates (why only even?)

\footnotetext{
Fun Video. Unfolding The Dragon - Fractal Curve - Think Twice
}

Fractals are typically not self-similar - 3Blue1Brown

\subsection*{12.2. Chaos Game (Iterated Function Systems)}

Intuitively, in these systems, we iterate a specific function repeatedly. For simplicity, let us only consider affine transformations \({ }^{8}\). We take a random initial point \(P=\left[\begin{array}{l}x \\ y\end{array}\right]\) and repeatedly apply different affine transformations to get \(P_{\text {next }}=f_{i}(P)\) with some probability \(p_{i}\). After large number of iterations, a pattern emerges!
\[
f(x, y)=\left[\begin{array}{ll}
a & b  \tag{32}\\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
e \\
f
\end{array}\right]
\]

Note. You can get probabilities by smartly generating random numbers. randuv( \(\mathrm{x}, \mathrm{y}\) ) (Simplecpp library) generates random numbers (double) between \(x\) and \(y\) If you feel adventurous then implement your own randon number generator using LFSRs :).

\subsection*{12.2.1 Sierpiński Triangle}

Consider \(A, B, C\) as some co-ordinates of an equilateral triangle. Now, after taking a random initial point \(P\) we go half the distance towards \(A\) or \(B\) or \(C\) with equal probability and repeat this with the new point over and over. This operation can be representated using affine transformations as below
\[
\begin{array}{ll}
\text { With probability } 1 / 3 \text {, apply } & f_{1}(x, y)=\left[\begin{array}{ll}
0.05 & 0.00 \\
0.00 & 0.05
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
A_{x} \\
A_{y}
\end{array}\right] \\
\text { With probability } 1 / 3 \text {, apply } & f_{2}(x, y)=\left[\begin{array}{ll}
0.05 & 0.00 \\
0.00 & 0.05
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
B_{x} \\
B_{y}
\end{array}\right] \\
\text { With probability } 1 / 3 \text {, apply } & f_{3}(x, y)=\left[\begin{array}{ll}
0.05 & 0.00 \\
0.00 & 0.05
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
C_{x} \\
C_{y}
\end{array}\right] \tag{35}
\end{array}
\]

In limit, we get the Sierpiński Triangle.
Problem Statement:
Simulate this system and observe the generated pattern using turtleSim with appropriate scaling such that it takes same width and height for all iterates.

\section*{Starter Code}

(d) Iterate 10000

(e) Iterate 100000

Figure 30: Sierpiński Triangle for iterates growing with power of 10

\subsection*{12.2.2 Barnsley's Fern}

Again, by taking different \(f_{i}\), we get different fractal. An explain
\[
\begin{array}{ll}
\text { With probability 0.01, apply } & f_{1}(x, y)=\left[\begin{array}{cc}
0.00 & 0.00 \\
0.00 & 0.16
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
\text { With probability 0.85, apply } & f_{2}(x, y)=\left[\begin{array}{cc}
0.85 & 0.04 \\
-0.04 & 0.85
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
0.00 \\
1.60
\end{array}\right] \\
\text { With probability 0.07, apply } & f_{3}(x, y)=\left[\begin{array}{cc}
0.20 & -0.26 \\
0.23 & 0.22
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
0.00 \\
1.60
\end{array}\right] \\
\text { With probability 0.07, apply } & f_{4}(x, y)=\left[\begin{array}{cc}
-0.15 & 0.28 \\
0.26 & 0.24
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
0.00 \\
0.44
\end{array}\right] \tag{39}
\end{array}
\]

In limit, we get the Barnsley's Fern.
Problem Statement:
Simulate this system and observe the generated pattern using turtleSim with appropriate scaling such that it takes same width and height for all iterates.

\section*{Starter Code}

(b) Iterate 1000

(d) Iterate 100000

Figure 31: Barnsley's Fern for iterates growing with power of 10

Fun Video. Chaos Game - Numberphile
Chaos Game - Fractals emerging from chaos - Computer simulation - Think Twice

\footnotetext{
\({ }^{8}\) In general, affine transformations are of the form \(A x+b\) where \(A\) is a matrix and \(x, b\) are vectors.
}```


[^0]:    ${ }^{4}$ called Koch curve, it is a fractal curve that has infinite length but contained in a finite area. Can you see why?

