
Practice Problems

Computer Programming and Utilization

Param Rathour

CS101

Practice Problems

Computer Programming and Utilization

Param Rathour
https://paramrathour.github.io/cs101

Last update: 2023-12-25 23:51:49+05:30

Disclaimer

These are optional problems. As these problems are pretty involving, my advice to you would be to first solve exercises
given in slides, lab optional questions and get comfortable with the course content.
I have created these problems such that you will learn something new from each problem. Each section builds on
the next; so, try to solve the problems only using the topics mentioned in that section and previous sections.
They will suffice to solve these problems. Don’t forget to look at the starter code (it will be in blue) for each
problem which takes care of input and output behaviours (and sometimes provides hints). I have also prepared model
solutions for each problem, they are available on request. Some interesting solutions that students have sent to me
are available here. Feel free to share your programs too at paramrathour3435@gmail.com. You can always find the
latest version of this problem set at the webpage mentioned in title.

Acknowledgements

Many thanks to Numberphile, 3Blue1Brown, Mathologer, PBS Infinite Series, Veritasium and countless other YouTube
channels for developing my love for mathematics and their Fun Videos further inspiring me to create these problems.
Also thank you Wikipedia and The On-Line Encyclopedia of Integer Sequences for freely providing their vast resources
and detailed information about concepts which helped me frame these problems. Many numbers, phrases, equations
and graphics are directly taken from there and modified as per my wish. I would also like to thank Project Euler,
CSES, Codeforces and many other online programming practice communities which motivated me to further pursue
programming and create problems. I faced lots of TEXnical issues while setting up this document and I thank TEX
- LATEX Stack Exchange community for their support and many thanks to LATEXDraw for their stylish cover page.
Thanks to the CS101 professors, my fellow TAs, tutees, and others for their valuable suggestions on improving these
problems. And, lastly thanks to you, reader; These problems are the result of my hard work over the years. I hope
they help you in some way or the other and you enjoy solving them :).

Simplecpp Graphics

Also we will be using Simplecpp for initial problem sets (till 8). Why? because Introductory Programming: Let Us
Cut through the Clutter! The course book is An Introduction to Programming through C++ by Abhiram G. Ranade.
Apart from C++, Simplecpp graphics are an interesting approach to introductory programming. Check out Turtle
Graphics – Wikipedia and Simplecpp Gallery for some fascinating examples. Graphics problems in this problem set are
– Star Spiral, Peace, Modular Times Table, Regular Star Polygon, Hilbert Curve, Thue-Morse Sequence, Recaman’s
Sequence, Farey Sequence, Dragon Curve, Sierpiński Arrowhead Curve, Sierpiński Triangle and Barnsley’s Fern.

Here are additional chapters of the book on Simplecpp graphics demonstrating its power.
(It is just a list, you are not expected to understand/study things, CS101 is for a reason :P)

Chapter 1 Turtle graphics

Chapter 5 Coordinate based graphics, shapes besides turtles

Chapter 15.2.3 Polygons

Chapter 19 Gravitational simulation

Chapter 20 Events, Frames, Snake game

Chapter 24.2 Layout of math formulae

Chapter 26 Composite class

Chapter 28 Airport simulation

2

https://paramrathour.github.io/cs101
https://github.com/paramrathour/CS-101/tree/main/Starter%20Codes
https://paramrathour.github.io/CS101/Solutions
mailto:paramrathour3435@gmail.com
https://www.youtube.com/user/numberphile
https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
https://www.youtube.com/channel/UC1_uAIS3r8Vu6JjXWvastJg
https://www.youtube.com/channel/UCs4aHmggTfFrpkPcWSaBN9g
https://www.youtube.com/user/1veritasium
https://en.wikipedia.org/wiki/Main_Page
http://oeis.org/
https://projecteuler.net/
https://cses.fi/problemset
https://codeforces.com/
tex.stackexchange.com
tex.stackexchange.com
https://latexdraw.com/tikz-cover-pages-gallery/
https://www.cse.iitb.ac.in/~ranade/simplecpp/
https://www.cse.iitb.ac.in/~ranade/iticse16.pdf
https://www.cse.iitb.ac.in/~ranade/iticse16.pdf
https://www.cse.iitb.ac.in/~ranade/book.html
https://en.wikipedia.org/wiki/Turtle_graphics
https://en.wikipedia.org/wiki/Turtle_graphics
https://www.cse.iitb.ac.in/~ranade/simplecpp/gallery.html

How to write a program? (5Cs)

• Carefully go through the problem statement

• Check your understanding of problem using solved examples and practice testcases

• Compose the programming approach on paper

• Consolidate your approach by verifying its correctness on testcases by doing dry runs

• Code it up (finally!)

Good Programming Practices

• Write documentation clearly explaining

– what the program does,

– how to use it,

– what quantities it takes as input, and

– what quantities it returns as output.

• Use appropriate variable/function names.

• Extensive internal comments explaining how the program works.

• Complete error handling with informative error messages.
For example, if a = b = 0, then the gcd(a, b) routine should return the error message
“gcd(0,0) is undefined” instead of going into an infinite loop or returning a “division by zero” error.

Tips

• Some data types that you should keep in mind are:

– bool

– char

– short int, int, long int, long long int and their unsigned counterparts

– float, double, long double

• Choose appropriate variable data types according to constraints. Example, if a variable is always an integer
then it should be assigned an int data type.

• Whenever possible prefer integer data types over floating point data types which aren’t accurate due to floating
point errors. Some problems that look like they will need floating point numbers but are solvable using integers
are Triangle Types, Friendly Pair and Newton Interpolation.

• Use type conversion to your advantage to

– make your program unambiguous.

– compute expressions containing variables of different data types.

• Find more tips at https://paramrathour.github.io/blog/cs101-tips

Get comfortable with Dry Runs

The most important step in debugging

• Select a testcase

• Manually go through the code to trace the value of variables

• Check if the values of variables matches with their expected values

– If they do not match for any variable at any time then your program is incorrect, consider debugging/rewrit-
ing it

– If they match for all variables at all times, Hurray! your program is correct for the current testcases!

• Now repeat the procedure for a different testcase :)

https://www.geeksforgeeks.org/type-conversion-in-c/
https://paramrathour.github.io/blog/cs101-tips

Contents

1 Prodigal Patterns 6
1.1 Star Spiral . 6
1.2 Peace . 7
1.3 Butterfly . 8
1.4 Alphabetical Floyd’s Triangle . 9
1.5 Bernoulli’s Triangle . 10
1.6 Modular Times Table . 11

2 Expression Obsession 12
2.1 Harmonic Number . 12
2.2 Wallis Product . 13
2.3 Tetration . 14
2.4 Ramanujan’s Nested Radical . 15
2.5 Simple Continued Fractions . 16
2.6 Ramanujan’s

√
πe
2 Formula . 17

2.7 Viète’s π Formula . 18
2.8 Hölder Mean . 19
2.9 Shoelace Formula . 20
2.10 Simpson’s Rule . 21

3 Traditional Conditionals 22
3.1 Triangle Types . 22

3.1.1 By Side . 22
3.1.2 By Angle . 22

3.2 Clock Angle . 23
3.3 Fleur Delacour . 24
3.4 Doomsday Algorithm . 25

4 Iteration Domination 26
4.1 Pisano Period . 26
4.2 Palindromic Number . 27
4.3 Kempner Series . 28
4.4 Base –2 . 29
4.5 Base Conversion . 30

5 Function Admiration 31
5.1 Collatz Conjecture . 31
5.2 Friendly Pair . 32
5.3 Gauss Circle Problem . 33
5.4 Euler’s Totient Function . 34
5.5 Regular Star Polygon . 35

6 Recursion Salvation 36
6.1 Ackermann Function . 36
6.2 Horner’s Method . 37
6.3 Modular Exponentiation . 38
6.4 Partitions . 39
6.5 Hereditary Representation . 40

7 Paths Paranoia (More Recursion?) 41
7.1 Staircase Walk . 41
7.2 Dyck Path . 42
7.3 Delannoy Number . 43
7.4 Schröder Number . 44
7.5 Motzkin Number . 45
7.6 Hilbert Curve . 46

8 Sequence Eminence (Intro to Arrays) 47
8.1 Josephus Problem . 47
8.2 Van Eck’s Sequence . 48
8.3 Look-And-Say Sequence . 49
8.4 Thue-Morse Sequence . 50
8.5 Recaman’s Sequence . 51
8.6 Farey Sequence . 52

9 Array Leeway (2-D Arrays) 53
9.1 Case Converter . 53
9.2 Spiral Grid . 54
9.3 Minesweeper . 55
9.4 Gray Code . 56

10 Array Powerplay (More Arrays or Recursion?) 57
10.1 Determinant of a Matrix . 57
10.2 Tower of Hanoi . 58
10.3 Quicksort . 59

11 Programming Expositions 60
11.1 Newton Interpolation . 60
11.2 ISBN . 61
11.3 Vigenére Cipher . 62
11.4 Linear Feedback Shift Register . 64

12 Fractal Fun 65
12.1 L-Systems . 65

12.1.1 Dragon Curve . 65
12.1.2 Sierpiński Arrowhead Curve . 65

12.2 Chaos Game (Iterated Function Systems) . 66
12.2.1 Sierpiński Triangle . 66
12.2.2 Barnsley’s Fern . 66

§1. Prodigal Patterns

Topics. turtleSim (turtle simulator) and its features forward, right, left, penUp, penDown

repeat statement, variables and their data types (int, char), typecasting.

1.1. Star Spiral

Problem Statement:
Draw the following Star Spiral.

Figure 1: A Star Spiral of 30 sides

Fun Video. Freaky Dot Patterns – Numberphile

https://youtu.be/QAja2jp1VjE

1.2. Peace

Problem Statement:
Draw the outline of the Proportionl Peace Sign according to measurements as shown in 2a.

(a) Measurements by Jerry S. Sadin, based on (image by SchuminWeb)

(b) Output generated using Simplecpp

Figure 2: Peace Sign

The output image will look like 2b.

Fun Video. Carl Sagan’s Pale Blue Dot – carlsagandotcom
Cosmos: Possible Worlds (Carl Sagan’s Monologue) – Evil Dead

https://bit.ly/peace-sign-measurements
https://bit.ly/peace-sign-wikipedia
https://commons.wikimedia.org/wiki/User:SchuminWeb
https://youtu.be/GO5FwsblpT8
https://youtu.be/lshWT0iyxds

1.3. Butterfly

Problem Statement:
Print the Butterfly pattern for a general n. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Butterfly pattern (each test case on a newline)

Constraints
1 ≤ ni ≤ 10

Sample Input
5
1 2 3 4 5

Sample Output

Fun Video. Chaos: The Science of the Butterfly Effect – Veritasium

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Butterfly.cpp
https://youtu.be/fDek6cYijxI

1.4. Alphabetical Floyd’s Triangle

The alphabets are filled in alphabetical order (‘A’ to ‘Z’) and a newline is started after printing n alphabets on the
nth line. After ‘Z’, the alphabets “wrap around” to ‘A’.

Problem Statement:
Print the left-aligned Alphabetical Floyd’s Triangle for all given n. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Alphabetical Floyd’s Triangle (left-aligned, each test case on a newline)

Constraints
1 ≤ ni ≤ 20

Sample Input
5
1 2 3 5 17

Sample Output
A

A
B C

A
B C
D E F

A
B C
D E F
G H I J
K L M N O

A
B C
D E F
G H I J
K L M N O
P Q R S T U
V W X Y Z A B
C D E F G H I J
K L M N O P Q R S
T U V W X Y Z A B C
D E F G H I J K L M N
O P Q R S T U V W X Y Z
A B C D E F G H I J K L M
N O P Q R S T U V W X Y Z A
B C D E F G H I J K L M N O P
Q R S T U V W X Y Z A B C D E F
G H I J K L M N O P Q R S T U V W

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Alphabetical Floyd's Triangle.cpp

1.5. Bernoulli’s Triangle

You might have heard about Pascal’s Triangle. The kth element of row n of Bernoulli’s Triangle is obtained by as
shown in 3 summing all elements of the row n (row 0 is the first row) until the kth element (partial sums).

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1

1 2

1 3 4

1 4 7 8

1 5 11 15 16

1 6 16 26 31 32

1 7 22 42 57 63 64

Figure 3: Bernoulli’s triangle from Pascal’s triangle (Image by Cmglee licensed under CC BY-SA 4.0)

Problem Statement:
Print the left-aligned Bernoulli’s Triangle for all given n. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Bernoulli’s Triangle (left-aligned, each test case on a newline)

Constraints
0 ≤ ni ≤ 20

Sample Input
4
0 1 2 10

Sample Output
1

1
1 2

1
1 2
1 3 4

1
1 2
1 3 4
1 4 7 8
1 5 11 15 16
1 6 16 26 31 32
1 7 22 42 57 63 64
1 8 29 64 99 120 127 128
1 9 37 93 163 219 247 255 256
1 10 46 130 256 382 466 502 511 512
1 11 56 176 386 638 848 968 1013 1023 1024

Fun Video. Pascal’s Triangle – Numberphile
What You Don’t Know About Pascal’s Triangle – Tipping Point Math

https://youtu.be/0iMtlus-afo
https://bit.ly/bernoullis-triangle
https://commons.wikimedia.org/wiki/User:Cmglee
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Bernoulli's Triangle.cpp
https://youtu.be/0iMtlus-afo
https://youtu.be/J0I1NuxUcpQ

1.6. Modular Times Table

Procedure to construct the Modular Times Table:

• Draw a circle which fits the entire “drawing canvas”.

• Imagine you have n equally-spaced points on the circumference of this circle. Number them 0 to n− 1 anti-clockwise with 0 being the leftmost point.

• For each i ∈ {0, 1, 2, . . . , n− 1} connect the points representing i with the point for (m · i) % n with a straight line.

An example is shown in 4. Don’t draw the numbers. They are just to visualise the construction.

1 3

7
5

0 4

6

2

Figure 4: Times Table for (n,m) = (8, 2)

Problem Statement:
For a given (n,m) pair (n > m), construct the Modular Times Table.

Starter Code

Input Format
n m (two numbers)

Output Format
The constructed Modular Times Table

Constraints
3 ≤ n ≤ 500 (an integer)
1 < m < n (a double, first try to solve the problem for an integer m)

Sample Input
See 5

Sample Output
See 5

The output Modular Times Tables

(a) (n,m) = (5, 2) (b) (n,m) = (10, 2) (c) (n,m) = (20, 2) (d) (n,m) = (50, 2) (e) (n,m) = (100, 2) (f) (n,m) = (200, 2)

(g) (n,m) = (200, 2.5) (h) (n,m) = (200, 3) (i) (n,m) = (200, 3.33) (j) (n,m) = (200, 3.66) (k) (n,m) = (200, 4) (l) (n,m) = (200, 5)

(m) (n,m) = (200, 34) (n) (n,m) = (200, 50.9) (o) (n,m) = (200, 51) (p) (n,m) = (200, 69) (q) (n,m) = (200, 99) (r) (n,m) = (200, 101)

Figure 5: Modular Times Table

Fun Video. Times Tables, Mandelbrot and the Heart of Mathematics
Modular Times Tables

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Modular Times Table.cpp
https://youtu.be/qhbuKbxJsk8
https://www.geogebra.org/m/z8wrdret

§2. Expression Obsession

Topics. repeat statement, variables and their data types (int, double), mathematical functions
(min, max, sqrt, pow, log, sine...).

2.1. Harmonic Number

The n-th Harmonic Number (Hn) is the sum of the reciprocals of the first n natural numbers.

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
i=1

1

i
(1)

Fun Fact. The Harmonic series diverges; i.e., Hn → ∞ as n → ∞.

Problem Statement:
Calculate Hn for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Hni (each test case on a newline, accurate till 10 decimal places)

Constraints
1 ≤ ni ≤ 106

Sample Input
11
1 2 3 5 10 20 30 50 100 1000 1000000

Sample Output
1.0000000000
1.5000000000
1.8333333333
2.2833333333
2.9289682540
3.5977396571
3.9949871309
4.4992053383
5.1873775176
7.4854708606
14.3927267229

Fun Video. The Harmonic Series – Tipping Point Math

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Harmonic Number.cpp
https://youtu.be/Dgcoa2yAUfw

2.2. Wallis Product

π/2 is given by below infinite product formula. It is the ratio of product of even squares and odd squares

π

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · =

∞∏
i=1

(
2i

2i− 1
· 2i

2i+ 1

)
(2)

Let’s define πn as n-th iteration of this infinite product as below

πn

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · 2n

2n− 1
· 2n

2n+ 1
=

n∏
i=1

(
2i

2i− 1
· 2i

2i+ 1

)
Problem Statement:
Calculate πn for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
πni

(each test case on a newline, accurate till 10 decimal places)

Constraints
1 ≤ ni ≤ 106

Sample Input
11
1 2 3 5 10 20 30 50 100 1000 1000000

Sample Output
2.6666666667
2.8444444444
2.9257142857
3.0021759546
3.0677038066
3.1035169615
3.1159482859
3.1260789002
3.1337874906
3.1408077460
3.1415918682

Fun Video. The Wallis product for pi, proved geometrically – 3Blue1Brown
The World’s Most Beautiful Formula For Pi – BriTheMathGuy

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Wallis Product.cpp
https://youtu.be/8GPy_UMV-08
https://youtu.be/k9nRlMDbefc

2.3. Tetration

Problem 2.1 is about repeated additions whereas 2.2 is about repeated multiplication. Guess what’s this problem
about. Yes! It’s repeated exponentiation. Tetration, the next hyperoperation after exponentiation defined as:

na = aa
··
a︸︷︷︸

n

repeated exponentiation (3)

Problem Statement:
Calculate na for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
a1 n1 a2 n2 . . . at nt (t space seperated pairs for each testcase)

Output Format
na (each test case on a newline, accurate till 10 decimal places)

Constraints
0.05 ≤ ai ≤ 3 (a double)
1 ≤ ni ≤ 1000 (an integer)

Sample Input
10
1 1 1 2 2 1 2 2 2 3 3 2 3 3 1.41421356237 20 0.06598803584 1000 1.44466786101 1000

Sample Output
1.0000000000
1.0000000000
2.0000000000
4.0000000000
16.0000000000
27.0000000000
7625597484987.0000000000
1.9995856229
0.3968311347
2.7128728643

Fun Video. Tetration: The operation you were (probably) never taught – Taylor Series
“Prove” 4 = 2 Using Infinite Exponents. Can You Spot The Mistake? – Mind Your Decisions

https://en.wikipedia.org/wiki/Hyperoperation
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Tetration.cpp
https://youtu.be/0poh3w_Vm_A
https://youtu.be/DmP3sFIZ0XE

2.4. Ramanujan’s Nested Radical

r =

√
1 + 2

√
1 + 3

√
1 + 4

√
1 + · · · = lim

n→∞

√
1 + 2

√
1 + 3

√
· · ·

√
1 + n (4)

Let’s define rn as n-th iteration of this infinite nested radical as below

rn =

√
1 + 2

√
1 + 3

√
· · ·

√
1 + n

Problem Statement:
Calculate rn for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
rni

(each test case on a newline, accurate till 10 decimal places)

Constraints
2 ≤ ni ≤ 100

Sample Input
8
2 3 5 10 20 30 50 100

Sample Output
1.7320508076
2.2360679775
2.7550532613
2.9899203606
2.9999878806
2.9999999868
3.0000000000
3.0000000000

Fun Video. Ramanujan: Knowing The Man Who Knew Infinity – singingbanana
Ramanujan’s infinite root and its crazy cousins – Mathologer

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Ramanujan's Nested Radical.cpp
https://youtu.be/HMGZVKwYNfk
https://youtu.be/leFep9yt3JY

2.5. Simple Continued Fractions

A (finite) simple continued fraction of a rational number r is defined using n+1 coefficients = [a0; a1, a2, . . . , an−1, an].
They can be expressed in Gauss’ Kettenbruch notation as follows

r = a0 +
n

K
i=1

1

an
≜ a0 +

1

a1 +
1

a2 +
1

. . .+
1

an

(5)

Problem Statement:
Express r as a quotient p/q where p, q are integers and q ̸= 0. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
ni ani ani−1 . . . a1 a0 (ni + 2 space seperated integers for each testcase)

Output Format
pni

/qni
(each test case on a newline, where rni

= pni
/qni

(in irreducible form))

Constraints
0 ≤ ni ≤ 50
a0 is an integer whereas a1, a2, . . . , ani−1, ani

are positive integers
a0, a1, a2, . . . , ani−1, ani are such that −2, 147, 483, 648 ≤ pni , qni ≤ 2, 147, 483, 647 (C++’s int range)

Sample Input
11
0 0
1 1 0
1 1 1
1 7 3
8 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1 2 -2
3 1 15 7 3
9 13 3 4 1 2 1 2 1 1 0
12 14 1 3 1 2 1 1 1 292 1 15 7 3
22 1 1 14 1 1 12 1 1 10 1 1 8 1 1 6 1 1 4 1 1 2 1 2
45 1 0

Sample Output
0/1
1/1
2/1
22/7
55/34
-233/144
355/113
3035/5258
80143857/25510582
848456353/312129649
1134903170/1836311903

Fun Video. Infinite fractions and the most irrational number – Mathologer

https://en.wikipedia.org/wiki/Generalized_continued_fraction#Notation
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Simple Continued Fractions.cpp
https://youtu.be/CaasbfdJdJg

2.6. Ramanujan’s
√

πe
2

Formula

This problem is a fusion of 2.5 and 2.1. It is recommended to solve them before proceeding to this problem.√
πe

2
=

1

1 +
1

1 +
2

1 +
3

1 +
4

1 + . . .

+

{
1 +

1

1 · 3 +
1

1 · 3 · 5 +
1

1 · 3 · 5 · 7 +
1

1 · 3 · 5 · 7 · 9 + · · ·
}

(6)

Let’s define cn as n-th convergent of this infinite continued fraction and sum as below

cn =
n

K
i=0

ai
1

+

n∑
i=0

1

(2n+ 1)!!
where ai =

{
1 i = 0

i i > 0
⇒

√
πe

2
= lim

n→∞
cn

Note. n!! ̸= (n!)!, n!! is double factorial of n.

Problem Statement:
Calculate cn for all test cases accurate till 10 decimal places. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
cni (each test case on a newline, accurate till 10 decimal places)

Constraints
0 ≤ ni ≤ 106

Sample Input
12
0 1 2 3 5 10 20 30 50 100 1000 1000000

Sample Output
2.0000000000
1.8333333333
2.1500000000
2.0095238095
2.0422571580
2.0709281786
2.0667462769
2.0664199465
2.0663680635
2.0663656843
2.0663656771
2.0663656771

Fun Video. 7 factorials you probably didn’t know – blackpenredpen
The Man Who Knew Infinity – Tipping Point Math

https://en.wikipedia.org/wiki/Double_factorial
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Ramanujan's pi, e Formula.cpp
https://youtu.be/7eboFOkRHr4
https://youtu.be/P0idBBhGNgU

2.7. Viète’s π Formula

This problem is a fusion of 2.2 and 2.4. It is recommended to solve them before proceeding to this problem.

2

π
=

√
2

2
·
√
2 +

√
2

2
·

√
2 +

√
2 +

√
2

2
· · · =

∞∏
i=1

i 2’s︷ ︸︸ ︷√√√√
2 +

√
· · ·
√

2 +

√
2 +

√
2 + 0

2
(7)

Let’s define πn as n-th iteration of this infinite nested radical as below

2

πn
=

n∏
i=1

i 2’s︷ ︸︸ ︷√√√√
2 +

√
· · ·
√

2 +

√
2 +

√
2 + 0

2

Problem Statement:
Calculate πn for all test cases accurate till 15 decimal places. See Starter code (below) for more details.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
πni

(each test case on a newline, accurate till 15 decimal places)

Constraints
1 ≤ ni ≤ 50

Sample Input
8
1 2 3 5 10 20 30 50

Sample Output
2.828427124746190
3.061467458920718
3.121445152258052
3.140331156954753
3.141591421511200
3.141592653588618
3.141592653589793
3.141592653589793

Fun Video. The Discovery That Transformed Pi – Veritasium

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Viete's pi Formula.cpp
https://youtu.be/gMlf1ELvRzc

2.8. Hölder Mean

Hölder mean is a generalized notion for aggregating sets of numbers.
For any non-zero real number p and positive reals x1, x2, . . . , xn, it is defined as

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

xp
i

) 1
p

(8)

Its special cases are

p = −∞ → M−∞(x1, . . . , xn) = lim
p→−∞

Mp(x1, . . . , xn) = min{x1, . . . , xn} (minimum)

p = −1 → M−1(x1, . . . , xn) =
n

1

x1
+ · · ·+ 1

xn

(harmonic mean)

p = 0 → M0(x1, . . . , xn) = lim
p→0

Mp(x1, . . . , xn) = n
√
x1 · · · · · xn (geometric mean)

p = 1 → M1(x1, . . . , xn) =
x1 + · · ·+ xn

n
(arithmetic mean)

p = 2 → M2(x1, . . . , xn) =

√
x2
1 + · · ·+ x2

n

n
(root mean square)

p = 3 → M3(x1, . . . , xn) =
3

√
x3
1 + · · ·+ x3

n

n
(cubic mean)

p = +∞ → M+∞(x1, . . . , xn) = lim
p→∞

Mp(x1, . . . , xn) = max{x1, . . . , xn} (maximum)

(9)

Problem Statement:
Calculate Mp(x1, . . . , xn) for all special cases (p = −∞,−1, 0, 1, 2, 3,∞) and accurate till 5 decimal places.

Starter Code

Input Format
t (number of test cases, an integer)
ni x1 x2 . . . xni−1 xni

(ni + 1 space seperated numbers for each testcase)

Output Format
Mp(x1, . . . , xn) for p = {−∞,−1, 0, 1, 2, 3,∞} (each test case on a newline, accurate till 5 decimal places))

Constraints
1 ≤ ni ≤ 50 (an integer)
0 < xi ≤ 100 (a double)
Also assume that the calculations are always within the range of double

Sample Input
4
2 1 1
5 1 2 3 4 5
13 1 3 6 10 15 21 28 36 45 55 66 78 91
33 1 3 6 2 7 13 20 12 21 11 22 10 23 9 24 8 25 43 62 42 63 41 18 42 17 43 16 44 15 45 14 46 79

Sample Output
1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
1.00000 2.18978 2.60517 3.00000 3.31662 3.55689 5.00000
1.00000 7.00000 19.67642 35.00000 45.28797 52.26138 91.00000
1.00000 9.31362 17.70339 25.66667 32.17424 37.42452 79.00000

More Test cases
Input and Output files

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Holder Mean.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Holder Mean/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Holder Mean/Output.txt

2.9. Shoelace Formula

Shoelace Formula determines the area of a simple polygon whose vertices are given by Cartesian coordinates.

A =

∣∣∣∣x1 x2 x3 · · · xn x1

y1 y2 y3 · · · yn y1

∣∣∣∣
2

(10)

which can be simplfied as

A =

∣∣∣∣x1 x2

y1 y2

∣∣∣∣+ ∣∣∣∣x2 x3

y2 y3

∣∣∣∣+ · · ·+
∣∣∣∣xn x1

yn y1

∣∣∣∣
2

where

∣∣∣∣xi xj

yi yj

∣∣∣∣ = xi · yj − xj · yi

Problem Statement:
Calculate the area of a given n-sided polygon for all test cases accurate till 1 decimal place.

Starter Code

Input Format
t (number of test cases, an integer)
ni x1 y1 x2 y2 · · · xn yn (2ni + 1 space seperated integers for each testcase)

Output Format
Ai (each test case on a newline, accurate till 1 decimal places)

Constraints
3 ≤ ni ≤ 1000
− 105 ≤ xi, yi ≤ 105

The given polygon is simple.

Sample Input
6
3 0 1 2 3 4 7
3 1 1 5 9 3 5
3 3 4 1 1 4 1
4 -2 4 -2 1 3 -3 4 4
8 458 695 621 483 877 469 1035 636 1061 825 875 1023 645 1033 485 853
10 443 861 470 506 754 432 910 446 952 485 1036 595 1101 721 1045 954 947 1009 712 1095

Sample Output
2.0
0.0
4.5
28.5
255931.0
325573.5

More Test cases
Input and Output files

Fun Video. Gauss’s magic shoelace area formula and its calculus companion

https://en.wikipedia.org/wiki/Simple_polygon
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Shoelace Formula.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Shoelace Formula/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Shoelace Formula/Output.txt
https://youtu.be/0KjG8Pg6LGk

2.10. Simpson’s Rule

Simpson’s Rule is a method in numerical integration (approximating definite integrals).

It approximates the area of f(x) in the interval [a, b] by area of parabola passing through a,
a + b

2
, b. as shown in 6.

𝑓 (x)

ю њ я

P(x)

Figure 6: Approximating f(x) by a parabola P (x). (Image by Popletibus licensed under CC BY-SA 4.0)

∫ b

a

f(x) dx ≈ b− a

6

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
(11)

If 11 is applied to n equally spaced subdivisions in [a, b], we get the composite Simpson’s rule 12.∫ b

a

f(x) dx ≈ ∆x

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ 4f(xn−1) + f(xn)) (12)

where each of the n+ 1 ordinates is given by xi = a+ i∆x for i = 0, 1, . . . , n and ∆x =
b − a

n

Note. Simpson’s rule can only be applied when an odd number of ordinates is chosen.

Problem Statement:

π =
22

7
−

∫ 1

0

x4(1− x)4

1 + x2
dx (13)

Calculate πn (approximate 13 using n ordinates) for all test cases (accurate till 15 decimal places).

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
πni (each test case on a newline, accurate till 15 decimal places)

Constraints
0 < ni < 500 and ni is odd

Sample Input
10
3 5 7 11 15 31 57 99 163 441

Sample Output
3.140773809523810
3.141684884891457
3.141601987350571
3.141593090129691
3.141592711563659
3.141592654188570
3.141592653603947
3.141592653590286
3.141592653589817
3.141592653589793

https://bit.ly/simpsons-rule
https://commons.wikimedia.org/wiki/User:Popletibus
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Simpson's Rule.cpp

§3. Traditional Conditionals

Topics. if else statement, loop contol statements (break, continue), more data types (bool, char) and,
logical NOT, AND, OR operators (!, &&, || respectively) and previous sections.

3.1. Triangle Types

Triangles can be classified using sides and angles as follows:

3.1.1 By Side

Scalene All sides different

Isosceles Any two sides equal

Equilateral All sides equal

3.1.2 By Angle

Acute All angles < 90°

Right One angle = 90°

Obtuse One angle > 90°

Problem Statement:
Given the three sides of the triangle a, b, c, output the type of triangle by side and angle. Also check the validity of
given sides i.e., output “NOT A TRIANGLE” if the given sides does not form a triangle.

Starter Code

Input Format
t (number of test cases, an integer)
ai bi ci (three space seperated integers for each testcase)

Output Format
Type by side & Type by angle (each test case on a newline)

Constraints
1 ≤ a, b, c ≤ 100

Sample Input
7
1 2 3
3 4 2
5 3 4
4 5 6
3 3 2
5 3 3
3 3 3

Sample Output
NOT A TRIANGLE
Scalene & Obtuse
Scalene & Right
Scalene & Acute
Isosceles & Acute
Isosceles & Obtuse
Equilateral & Acute

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Triangle Type.cpp

3.2. Clock Angle

Problem Statement:
Determine the pairwise angle between the hour, minute and second hand of a 24-hour clock at given time.
Let

• ∠HM denote angle between hour hand and minute hand.

• ∠HS denote angle between hour hand and second hand.

• ∠MS denote angle between minute hand and second hand.

Note. Calculate the convex angle between pair of hands i.e., 0 ≤ ∠ij ≤ 180.

Starter Code

Input Format
t (number of test cases, an integer)
Hours:Minutes:Seconds (three colon seperated integers for each testcase)

Output Format
∠HM ∠HS ∠MS (three space seperated angles (in degrees, accurate till 4 decimal places)) on a newline

Constraints
Given time is a valid; i.e., 0 ≤ Hours ≤ 23, 0 ≤ Minutes ≤ 59, 0 ≤ Seconds ≤ 59 (integers)

Sample Input
12
00:00:00
03:00:00
21:45:00
10:10:00
03:16:36
09:49:09
19:38:18
05:07:11
11:07:05
17:19:23
23:19:17
23:59:59

Sample Output
0.0000 0.0000 0.0000
90.0000 90.0000 0.0000
22.5000 67.5000 90.0000
115.0000 55.0000 60.0000
1.3000 117.7000 116.4000
0.3250 119.4250 119.1000
0.6500 121.1500 121.8000
110.4917 87.5917 22.9000
68.9583 56.4583 12.5000
43.3917 21.6917 21.7000
136.0583 122.3583 13.7000
0.0917 5.9917 5.9000

More Test cases
Input and Output files

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Clock Angle.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Clock Angle/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Clock Angle/Output.txt

3.3. Fleur Delacour

Fleur Delacour has an interesting flower. She is also very busy, so she forgets to water the flower sometimes.
The flower grows as follows:

• If the flower is watered in the i-th day, it grows by 1 unit.

• If the flower is watered in the i-th and in the (i− 1)-th day (i > 1), then it grows by 5 units instead of 1.

• If the flower is not watered in the i-th day, it does not grow.

• If the flower isn’t watered for two days in a row, it dies.

Problem Statement:
Calculate the flower’s height after n days given information whether Fleur has watered the flower or not for n successive
days. Take the flower’s initial height as 1 unit.

Starter Code

Input Format
t (number of test cases, an integer)
ni a1 a2 . . . ani−1 ani (ni + 1 space seperated integers for each testcase)

Output Format
The flower’s height after ni days. If the flower dies, output −1 (each test case on a newline)

Constraints
1 ≤ ni ≤ 100

ai =

{
1 if Fleur waters the flower

0 if Fleur does not water the flower

Sample Input
9
1 0
2 0 0
2 1 0
3 1 0 1
3 0 1 1
5 1 0 1 0 0
5 1 0 1 0 1
5 1 0 1 1 0
10 1 1 1 1 1 1 1 1 1 1

Sample Output
1
-1
2
3
7
-1
4
8
47

More Test cases
Input and Output files

Note. Verify your program on even more testcases from here.

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Fleur Delacour.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Fleur Delacour/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Fleur Delacour/Output.txt
https://codeforces.com/problemset/problem/1585/A

3.4. Doomsday Algorithm

The Doomsday Algorithm is a method for determining the day of the week for a given date. It takes advantage of
some easy-to-remember-dates called Doomsdates falling on the same day called Doomsdays for a given year.
Eg., 3/1 (4/1 leap years), Last Day of Feb, 14/3 (Pi Day), 4/4, 6/6, 8/8, 10/10, 12/12, 9/5, 5/9, 11/7, 7/11.

Watch the Fun Video or go through the Wikipedia Article to understand the approach. In short the steps are:

• Find the anchor day for the century.

• Calculate the anchor day for the year (according to the century).

• Select the date (Doomsdate) of the given month that falls on doomsday (according to the year).

• Count days between the Doomsdate and given date which gives the answer.

Problem Statement:
Write a function that calculates the day of the week for any particular date in the past or future.
Consider Gregorian calendar (AD)

Starter Code

Input Format
t (number of test cases, an integer)
DD/MM/YYYY (Date Month Year) (three slash seperated integers for each testcase)

Output Format
Day of the Week (each test case on a newline)

Constraints
1 ≤ Date ≤ 99, 1 ≤ Month ≤ 99, 1 ≤ Year ≤ 9999 (integers)

Sample Input
8
01/01/0001
19/02/1627
29/02/1700
15/04/1707
22/12/1887
23/06/1912
01/01/2000
15/03/2020

Sample Output
Monday
Friday
INVALID DATE!
Friday
Thursday
Sunday
Saturday
Sunday

More Test cases
Input and Output files

Fun Video. The Doomsday Algorithm – Numberphile

https://youtu.be/z2x3SSBVGJU
https://en.wikipedia.org/wiki/Doomsday_rule
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Doomsday Algorithm.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Doomsday Algorithm/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Doomsday Algorithm/Output.txt
https://youtu.be/z2x3SSBVGJU

§4. Iteration Domination

Topics. for, while & do while loops and previous sections.

4.1. Pisano Period

The Fibonacci numbers are the numbers in the integer sequence defined by the following recurrence relation

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 n ∈ Z (Yes! They can be extended to negative numbers)

(14)

For any integer n, the sequence of Fibonacci numbers Fi % n is periodic.

The Pisano period, denoted π(n), is the length of the period of this sequence.

For example, the sequence of Fibonacci numbers modulo 3 begins:

0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, . . . (A082115)

This sequence has period 8, so π(3) = 8.

Basically, the remainders repeat when these numbers are divided by n. You have to find this period.

Problem Statement:
Find Pisano period of t numbers n1, n2, . . . , nt

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated numbers for each testcase)

Output Format
π(ni) (each test case space seperated)

Constraints
1 < ni ≤ 1000

Sample Input
17
2 3 5 8 13 21 34 55 89 144 233 987 30 50 98 750 1000

Sample Output
3 8 20 12 28 16 36 20 44 24 52 32 120 300 336 3000 1500

Fun Video. Fibonacci Mystery – Numberphile

https://oeis.org/A082115
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Pisano Period.cpp
https://youtu.be/Nu-lW-Ifyec

4.2. Palindromic Number

A non-negative integer is a Palindromic number if it remains the same when it’s digits are reversed.

Problem Statement:
Determine whether the given integer is a Palindrome for all test cases.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
“yes” if ni is a Palindrome else “no”. (each test case on a newline)

Constraints
0 ≤ ni ≤ 109

Sample Input
13
1 7 15 22 196 666 1212 96096 111111 8801088 9256713 40040004 123454321

Sample Output
yes
yes
no
yes
no
yes
no
no
yes
yes
no
no
yes

Fun Video. Why 02/02/2020 is the most palindromic date ever. – Stand-up Maths
Every Number is the Sum of Three Palindromes – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Palindromic Number.cpp
https://youtu.be/4fE_sXZjxng
https://youtu.be/OKhacWQ2fCs

4.3. Kempner Series

Kempner series is Harmonic series where all terms whose denominator contains 9 are excluded.

Kn = 1 +
1

2
+

1

3
+ · · ·+ 1

8
+

1

10
+ · · ·+ 1

n
=

n∑
i=1

ci
1

i
where ci =

{
0 if i’s decimal expansion contains a 9

1 else
(15)

Fun Fact. Unlike Harmonic series, the Kempner series converges to around 22.92.
This is because most large integers contain a 9, hence they will be excluded from the sum.

Problem Statement:
Calculate Kn for all test cases accurate till 10 decimal places.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Kni

(each test case on a newline, accurate till 10 decimal places)

Constraints
1 ≤ ni ≤ 106

Sample Input
11
1 2 3 5 10 20 30 50 100 1000 1000000

Sample Output
1.0000000000
1.5000000000
1.8333333333
2.2833333333
2.8178571429
3.4339969671
3.7967616822
4.2549307007
4.7818487651
6.5907201903
11.0156518499

Fun Video. 3 is everywhere – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Kempner Series.cpp
https://youtu.be/UfEiJJGv4CE

4.4. Base –2

By using −2 as the base, both positive and negative integers can be expressed without an explicit sign or other
irregularity. Just like positive integral bases, any base −2 number can be represented as follows:

(an . . . a2a1a0)(−2) = an(−2)n + · · ·+ a2(−2)2 + a1(−2)1 + a0(−2)0 where ai is either 0 or 1 (16)

To find base −2 representation of n, we repeatedly divide by −2 until the quotient becomes 0 and the remainders
generated (which are either 0 or 1) will be the digits of base −2 representation.

n = Quotient× (−2) + Reminder → Quotient = Quotientnew × (−2) + Remindernew

For −3, the process it as shown below,

−3 = 2× (−2) + 1 → a0 = 1

2 = −1× (−2) + 0 → a1 = 0

−1 = 1× (−2) + 1 → a2 = 1

1 = 0× (−2) + 1 → a3 = 1

Hence (−3)10 = (1101)(−2).

Note. C++’s % operator may give negative values when the dividend or divisor is negative.
For example, (−1)%(2) = (−1)%(−2) = −1 ̸= 1.

Problem Statement:
Convert the given decimal number into base −2 for all test cases.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Converted base −2 number (each test case on a newline)

Constraints
−200 ≤ ni ≤ 200

Sample Input
10
-4 -3 -2 -1 0 1 2 3 4 100

Sample Output
1100
1101
10
11
0
1
110
111
100
110100100

More Test cases
Input and Output files

Fun Video. Base 12 – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Base -2.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Base -2/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Base -2/Output.txt
https://youtu.be/U6xJfP7-HCc

4.5. Base Conversion

In this problem, you will convert binary number to decimal and vice versa.

Hint. First solve the conversion problem for integers and then try to incorporate their fractional part.

(a) Problem Statement:
Convert t positive binary numbers (n1, n2, . . . , nt) to decimal.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated numbers for each testcase)

Output Format
Converted decimal number (space seperated)

Constraints
0 ≤ ni ≤ 1015, a maximum of 8 digits after binary point (‘.’) (base 2, a double)

Sample Input
9
1 111 110001 101010111 100101100001 1.00011001 11.001001 110.01 10110.01110101

Sample Output
1.00000000 7.00000000 49.00000000 343.00000000 2401.00000000 1.09765625 3.14062500
6.25000000 22.45703125

(b) Problem Statement:
Convert t positive decimal numbers (n1, n2, . . . , nt) to binary.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated numbers for each testcase)

Output Format
Converted binary number truncated till 8 decimal places (space seperated)

Constraints
0 ≤ ni ≤ 2500, a maximum of 8 digits after decimal point (‘.’) (base 10, a double)

Sample Input
9
1 7 49 343 2401 1.1 3.1415 6.25 22.459

Sample Output
1.00000000 111.00000000 110001.00000000 101010111.00000000 100101100001.00000000
1.00011001 11.00100100 110.01000000 10110.01110101

Fun Video. Dungeon Numbers – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Base Conversion I.cpp
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Base Conversion II.cpp
https://youtu.be/xNx3JxRhnZE

§5. Function Admiration

Topics. functions, passing by value & reference and previous sections.

For this problem set, try to modularise as much as possible; i.e., make functions for sensible repeating parts.

5.1. Collatz Conjecture

Consider the following operation on an arbitrary positive integer:

• If the number is even, divide it by two.

• If the number is odd, triple it and add one.

This operation can be defined using the function f as follows:

f(n) =

{
n/2 if n is even

3n+ 1 if n is odd
(17)

Also note that the function updates n itself.
Let {ai} be the sequence of values n acquires by applying f repeatedly.
Collatz conjecture states that for every positive integer this procedure will eventually reach 1.
For example, if initial value of n = 3, 1 is reached in seven operations .

3
3×3+1−−−−→

(1)
10

10/2−−−→
(2)

5
3×5+1−−−−→

(3)
16

16/2−−−→
(4)

8
8/2−−→
(5)

4
4/2−−→
(6)

2
2/2−−→
(7)

1

Problem Statement:
Your task is to return the number of operations required to reach 11 for arbitrary number of inputs.

Starter Code

Input Format
n1 n2 . . . ni . . .− 1 (space separated arbitrary number of testcases, stop when input is negative)

Output Format
number of operations required to reach 1 with initial value of n = ni (space seperated for each test case)

Constraints
1 ≤ ni ≤ 106

Function(s) to Implement
void f(long long &n) – updates value of n
int count operations(long long n) – returns the number of operations required to reach 1

Sample Input
1 3 7 9 27 255 871 4255 77031 665215 837799 -1

Sample Output
0 7 16 19 111 47 178 201 350 441 524

Fun Video. Collatz Conjecture: The Simplest Math Problem No One Can Solve – Veritasium

1As of 2020, the conjecture has been checked by computer for all starting values up to 268 ≈ 2.95 × 1020, so sequence from n will
reach 1 for the given constraints.

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Collatz Conjecture.cpp
https://youtu.be/094y1Z2wpJg

5.2. Friendly Pair

Two positive integers form a Friendly pair if they have a common abundancy index.
The abundancy index of a number is the ratio of sum of divisors of that number and the number itself.

abundancy index =
σ(n)

n
where σ(n) is the sum of divisors of n (18)

For example, 6 and 28 form a friendly pair2 as

σ(6)

6
=

1 + 2 + 3 + 6

6
=

12

6
= 2 =

56

28
=

1 + 2 + 4 + 7 + 14 + 28

28
=

σ(28)

28

Problem Statement:
Given two numbers a, b check if they form a friendly pair.
Express the common abundancy (if it exists) as a quotient p/q where p, q are integers and q ̸= 0.

Starter Code

Input Format
t (number of test cases, an integer)
a1 b1 a2 b2 . . . at bt (t space seperated integer pairs for each testcase)

Output Format
Output the common abundancy if ai, bi form a friendly pair else output −1 (each test case on a newline)
pai

/qai
(where common abundancy = pai

/qai
and pai

, qai
are integers & qai

̸= 0 in irreducible form)

Constraints
1 < ai, bi ≤ 109

Function(s) to Implement
long long sum of divisors(int n) – returns the sum of divisors of n
bool friendly pair check(int a, int b) – outputs the common abundancy index or −1

Sample Input
10
6 28 10 20 30 140 30 2480 135 819 42 544635 1556 9285 4320 4680
693479556 8640 84729645 155315394

Sample Output
2
-1
12/5
12/5
16/9
16/7
-1
7/2
127/36
896/351

Fun Video. A Video about the Number 10 – Numberphile

2in fact, they are called perfect numbers as their abundancy = 2

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Friendly Pair.cpp
https://youtu.be/KZ1BVlURwfI

5.3. Gauss Circle Problem

Consider a circle in the x− y plane with center at the origin and radius r ≥ 0 (r ∈ R such that r2 = n ∈ Z).
Gauss’s circle problem asks the number of lattice points N(r) in the interior or on the circumference of this circle.
These points are of the form (x, y) ∈ Z2 such that x2 + y2 ≤ r2 = n. Also, note that N(r) ∼ πr2 (why?).

Figure 7: A circle with r = 5 units bounding 81 integer points. N(r) = 81 ∼ πr2 ≈ 78.54

Consider the subproblem of finding M(i) – the number of (x, y) ∈ Z2 such that x2+y2 = i where i ∈ {; 0, 1, . . . , n}.

Clearly N(r) =

r2∑
i=0

M(i) → N(
√
n) =

n∑
i=0

M(i). Now,

M(i) = 4
∑
j|n

χ(j) where χ(n) =


1 if n%4 = 1

−1 if n%4 = 3

0 else

(19)

Problem Statement:
Calculate N(

√
n) for a given n; i.e. the number of lattice points (x, y) such that x2 + y2 ≤ n.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
N(

√
ni) (each test case space seperated)

Constraints
1 < ni ≤ 107

Function(s) to Implement
int X(int n) – returns χ(n)
int count lattice points(int n) – returns M(n)

Sample Input
15
0 1 2 3 5 10 20 30 50 100 1000 10000 100000 1000000 10000000

Sample Output
1 5 9 9 21 37 69 97 161 317 3149 31417 314197 3141549 31416025

Interesting Observation. Does the last few outputs look familiar? How can this happen? :o
Also, if the last output took a long time then think how you can do the calculations faster?

Fun Video. Pi hiding in prime regularities – 3Blue1Brown
Your New Favorite Formula For Pi – BriTheMathGuy

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Gauss Circle Problem.cpp
https://youtu.be/NaL_Cb42WyY
https://youtu.be/VftM4LpTrkI

5.4. Euler’s Totient Function

Euler’s totient function φ(n) is the number of positive integers ≤ n that are co-prime to n.
A simple apporach to calculating this function is to count the integers i’s such that 1 ≤ i ≤ n and gcd(i, n) = 1.
But there is a better way using the Euler’s Product Formula

φ(n) = n
∏
p|n

(
1− 1

p

)
For all primes p ≤ n (20)

So, if n = pk1
1 pk2

2 · · · pkr
r , where p1, p2, . . . , pr are the distinct primes dividing n

φ(n) = pk1−1
1 (p1−1) pk2−1

2 (p2−1) · · · pkr−1
r (pr−1)

Problem Statement:
Calculate φ(n) for a given n

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
φ(ni) (each test case on a newline)

Constraints
1 < ni ≤ 109

Function(s) to Implement
int totient(int n) – returns φ(n)

Sample Input
13
1 4 8 20 44 69 97 120 2520 55440 277200 720720 88888888

Sample Output
1
2
4
8
20
44
96
32
576
11520
57600
138240
12690687

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Euler's Totient Function.cpp

5.5. Regular Star Polygon

A regular star polygon is a self-intersecting, equilateral equiangular polygon. It is denoted by Schläfli symbol {n/m}
where n is the number of vertices and m is the density (sum of the turn angles of all the vertices 360°).

Construction via vertex connection Connect every mth point out of n points regularly spaced on a circle.
For example, check out the demo videos for constructing {7, 2} and {7, 3}.
So a seven-pointed star can be obtained in two-ways,
By connecting vertex 1 to 3, then 3 to 5, then 5 to 7, then 7 to 2, then 2 to 4, then 4 to 6, then 6 to 1 or by
By connecting vertex 1 to 4, then 4 to 7, then 7 to 3, then 3 to 6, then 6 to 2, then 2 to 5, then 5 to 1.

Problem Statement:
Construct the {n/m} regular star polygon for given n,m.

Starter Code

Input Format
m n (2 space seperated integers)

Output Format
Regular Star Polygon with Schläfli symbol {n/m}

Constraints
1 ≤ n ≤ 50, 1 ≤ m < n/2

Function(s) to Implement
void regular star polygon(int n, int m) – draws the correspoding regular star polygon

Sample Input
See 8.

Sample Output
See 8.

{m,n} 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

n

m

Figure 8: Some inputs m,n and their correspoding star polygons in a tabular fashion.

Fun Video. The 3-4-7 miracle. Why is this one not super famous? – Mathologer

https://github.com/paramrathour/CS-101/tree/main/Media/Regular Star Polygon/7-2.mkv
https://github.com/paramrathour/CS-101/tree/main/Media/Regular Star Polygon/7-3.mkv
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Regular Star Polygon.cpp
https://youtu.be/oEN0o9ZGmOM

§6. Recursion Salvation

Topics. recursive functions and previous sections.

Five Simple Steps for Solving Any Recursive Problem

(Courtesy – Reducible)

• What’s the simplest possible input?
• Play around with examples and visualize!
• Relate hard cases to simpler cases
• Generalize the pattern
• Write code by combining recursive pattern with base case

6.1. Ackermann Function

Ackermann Function is defined as follows

A(0, n) = n+ 1

A(m, 0) = A(m− 1, 1)

A(m,n) = A(m− 1,A(m,n− 1))

(21)

Problem Statement:
Calculate A(m,n) (given m,n) for all test cases.

Starter Code

Input Format
t (number of test cases, an integer)
m1 n1 m2 n2 . . . mt nt (t space seperated integer pairs for each testcase)

Output Format
A(mi, ni) (each on a newline)

Constraints
mi, ni are postive integers such that A(mi, ni) is within the range of int

Function(s) to Implement
int A(int m, int n) – returns A(m,n)

Sample Input
10
0 0 0 5 1 0 1 3 2 4 3 1 3 3 3 9 4 0 4 1

Sample Output
1
6
2
5
11
13
61
4093
13
65533

Interesting Observation. Was your program able to compute the last output? Why not? How to fix this?

Fun Video. The Most Difficult Program to Compute? – Computerphile

https://youtu.be/ngCos392W4w
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Ackermann Function.cpp
https://youtu.be/i7sm9dzFtEI

6.2. Horner’s Method

Consider, the problem of evaluating a polynomial given its coefficients.

f(x) = a0 + a1 · x+ a2 · x2 + a3 · x3 + · · ·+ an · xn

A naive method is to evaluate x0, x1, x2, . . . , xn independently, then multiply xi with ai and add all results.

f(x) = a0 + a1 · x+ a2 · x · x+ a3 · x · x · x+ · · ·+ an x · x · · ·x︸ ︷︷ ︸
n times

This approach takes 1 + 2 + · · ·+ n = n(n+ 1)/2 multiplications and n additions.
It can be improved by using the precalculated xi−1 and multiplying it by x to get xi. This reduces the number of multiplications
significantly to 2n− 1 while keeping the number of additions n.

f(x) = a0 + a1 · x0 · x+ a2 · x1 · x+ a3 · x2 · x+ · · ·+ anx
n−1 · x

But surprisingly there is an even better way! Horner’s Method as described in 22, is an optimal algorithm for polynomial
evaluation needing only n multiplications and n additions.

f(x) = a0 + x

(
a1 + x

(
a2 + x

(
a3 + · · ·+ x(an−1 + x an) · · ·

)))
(22)

Problem Statement:
Evaluate polynomial given by coefficients at x using Horner’s Method for all test cases.

Starter Code

Input Format
t (number of test cases, an integer)
xi ni a0 a1 a2 · · · ani (ni + 3 space seperated integers for each testcase)

Output Format
f(xi) (each on a newline)

Constraints
1 < xi, ni, ai ≤ 104

Also assume that the calculations are always within the range of long long

Function(s) to Implement
long long f(const int &x, int a, int b) – returns f(x), you are also given two extra parameters.

Sample Input
6
1 0 1
2 1 -3 2
2 2 15 -8 7
3 3 2 -1 -3 4
5 6 21 10 19 47 48 9 27
3 14 -1 59 265 -35 8 -97 -932 38 4 -62 -643 38 -3 27 950

Sample Output
1
1
27
80
486421
4552224296

Interesting Observation. If recursion was not allowed do you think it would be possible to solve this problem given it’s input
order was (a0 a1 a2 · · · ani)? Problem 2.5 had inputs in reverse order ani ani−1 . . . a1 a0. By taking inspiration from
recursion, solve it when the inputs are in correct order (a0 a1 a2 · · · ani).

Fun Video. How Imaginary Numbers Were Invented – Veritasium

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Horner's Method.cpp
https://youtu.be/cUzklzVXJwo

6.3. Modular Exponentiation

Consider the problem of calculating xy (mod k) (i.e. the remainder when xy is divided by k).
A naive approach is to keep multiplying by x (and take (mod k)) until we reach xy.3

x (mod k) → x2 (mod k) → x3 (mod k) → x4 (mod k) → · · · → xy (mod k)

We can use a much faster method which involves repeated squaring of x (mod k)

x (mod k) → x2 (mod k) → x4 (mod k) → x8 (mod k) → · · · → x2⌊log y⌋
(mod k) (23)

The idea is to multiply some of the above numbers and get xy (mod k).
This is achieved by choosing all powers that have 1 in binary representation of y.
For example,

x25 = x110012 = x100002 · x10002 · x12 = x16 · x8 · x1

which gives,
x25 (mod k) = ((x16 (mod k)) · (x8 (mod k)) · (x1 (mod k))) (mod k)

(a) Problem Statement:
Calculate xy (mod k) using the above method for n (x, y, k) triples. Take k = 109 + 7. why this number?

Starter Code

Input Format
t (number of test cases, an integer)
x1 y1 x2 y2 . . . xt yt (t space seperated integer pairs for each testcase)

Output Format
xyi

i (mod k) (each test case on a newline)

Constraints
1 < xi, yi ≤ 109

Function(s) to Implement
int mod exp(int x, int y, int k) – returns xy (mod k)

Sample Input
5
3 4 2 8 123 123 129612095 411099530 241615980 487174929

Sample Output
81
256
921450052
276067146
838400234

Note. Before proceeding to next task, verify your program on more testcases from here.

(b) Problem Statement:
Calculate xyz

(mod k) using the above method for n (x, y, k) triples. Take k = 109 + 7. why this number?

Starter Code

Input Format
t (number of test cases, an integer)
x1 y1 z1 x2 y2 z2 . . . xt ytzt (t space seperated triples for each testcase)

Output Format

x
y
zi
i

i (mod k) (each test case on a newline)

Constraints
1 < xi, yi, zi ≤ 109

Function(s) to Implement
int mod super exp(int x, int y, int z, int k) – returns xyz

(mod k)

Sample Input
5
3 7 1 15 2 2 3 4 5 427077162 725488735 969284582 690776228 346821890 923815306

Sample Output
2187
50625
763327764
464425025
534369328

Note. Verify your program on more testcases from here.

Fun Video. Square & Multiply Algorithm - Computerphile
3this works because (a · b) (mod m) = ((a (mod m)) · (b (mod m))) (mod m)

https://www.geeksforgeeks.org/modulo-1097-1000000007/
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Modular Exponentiation I.cpp
https://cses.fi/problemset/task/1095
https://www.geeksforgeeks.org/modulo-1097-1000000007/
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Modular Exponentiation II.cpp
https://cses.fi/problemset/task/1712
https://youtu.be/cbGB__V8MNk

6.4. Partitions

A partition of a natural number n is a way of decomposing n as sum of natural numbers ≤ n.
For example, their are 5 partitions of 4 given by {4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1}.
Let use denote the number of partitions of n by P(n).
Now, we move to a seemingly unrelated theorem.

Theorem 1 (Pentagonal Number Theorem). PNT relates the product and series representations of the Euler function

∞∏
n=1

(1− xn) =

∞∑
k=−∞

(−1)
k
xk(3k−1)/2 = 1 +

∞∑
k=1

(−1)k
(
xk(3k+1)/2 + xk(3k−1)/2

)
(24)

In other words,

(1− x)(1− x2)(1− x3) · · · = 1− x− x2 + x5 + x7 − x12 − x15 + x22 + x26 − · · ·

The exponents 1, 2, 5, 7, 12, . . . on the right hand side are called (generalized) pentagonal numbers (A001318).
They are given by the formula pk = k(3k − 1)/2 for k = 1,−1, 2,−2, 3,−3, . . .

Equation 24 implies a recurrence relation for calculating P(n) given by

P(n) = P(n− 1) + P(n− 2)− P(n− 5)− P(n− 7) + · · · =
∑
k ̸=0

(−1)k−1 P(n− pk) (25)

Problem Statement:
Calculate P(n) for all test cases using24 or otherwise :).

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
P(ni) (each test case on a newline)

Constraints
1 ≤ ni ≤ 40

Function(s) to Implement
int P(int n) – returns P(n)

Sample Input
9
1 2 3 4 5 10 20 30 40

Sample Output
1
2
3
5
7
42
627
5604
37338

Fun Video. Partitions – Numberphile
The hardest What comes next (Euler’s pentagonal formula) – Mathologer

https://en.wikipedia.org/wiki /Euler_function
https://oeis.org/A001318
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Partitions.cpp
https://youtu.be/NjCIq58rZ8I
https://youtu.be/iJ8pnCO0nTY

6.5. Hereditary Representation

The usual base b representation is of a natural number is given by

nb = a0 · b0 + a1 · b1 + · · · where ai’s ∈ {0, 1, . . . , b− 1} (26)

Here the power i of exponent bi is in decimal but what if we continue to represent i in base b until we use only 0, 1, 2, . . . , b− 1 for all exponents of b.

This is the Hereditary Representation! Representing a natural number nb in base b using only 0, 1, 2, . . . , b− 1 as exponents of b.

To generate this representation, find the usual base representation of the number and then represent its exponents also in the usual base representation. Keep
repeating this until there is no exponent > b.

For example,
6662 = 21 + 23 + 24 + 27 + 29

= 21 + 22
0+21 + 22

2

+ 22
0+21+22 + 22

0+23

= 21 + 22
0+21 + 22

21

+ 22
0+21+22

1

+ 22
0+22

0+21

(27)

Here are some more examples to get familiar,

102 = 21 + 22
0+21

1002 = 22
1

+ 22
0+22

1

+ 22
1+22

1

34353 = 2 · 31 + 33
1

+ 2 · 32·30+31 + 32·3
1

+ 33
0+2·31

75477778702710 = 7 ·A0 + 2 ·A1 + 7 ·A3 + 8 ·A4 + 7 ·A5 + 7 ·A6 + 7 ·A7 + 7 ·A8 + 4 ·A9 + 5 ·AA1

+ 7 ·AA0+A1

Problem Statement:
Output the Hereditary Representation of the input natural number n in base b (≥ 2) following the below conventions:

• Use +, * to denote addition (add space between operands), multiplication (no space between operands) respectively and b^{y} for by where y is some
expression.

• The powers of base representation are in increasing order (first b0 then b1 then b2 and so on).

• Powers are displayed only when their coefficients are > 0 (non-zero).

• Coefficients themselves are only displayed when they are > 1.

• The exponents between 0 and b− 1 must not be simplified further. So, b is represented as b^{1} and not as b^{b^{0}}.

• For bases > 10, use capital alphabets (A,B,C, . . . , Z) to denote (10, 11, 12, . . . , 35) respectively.

Starter Code

Input Format
t (number of test cases, an integer)
n1 b1 n2 b2 . . . nt bt (t space seperated pairs (number, base) for each testcase)

Output Format
Hereditary Representation of ni in base bi (each on a newline)

Constraints
1 < ni ≤ 2 · 1018
1 < bi ≤ 35

Function(s) to Implement
void Hereditary (long long num, int base) – prints the required representation

Sample Input
9
2 2 10 2 100 2 666 3 3435 3 3816547290 4 3816547290 9 3816547290 35 1162849439785405935 10

Sample Output
2^{1}
2^{1} + 2^{2^{0} + 2^{1}}
2^{2^{1}} + 2^{2^{0} + 2^{2^{1}}} + 2^{2^{1} + 2^{2^{1}}}
2*3^{2} + 2*3^{3^{0} + 3^{1}} + 2*3^{2*3^{0} + 3^{1}}
2*3^{1} + 3^{3^{1}} + 2*3^{2*3^{0} + 3^{1}} + 3^{2*3^{1}} + 3^{3^{0} + 2*3^{1}}
2*4^{0} + 2*4^{1} + 4^{2} + 3*4^{3} + 3*4^{4^{1}} + 2*4^{2*4^{0} + 4^{1}} + 3*4^{3*4^{0} + 4^{1}} + 3*4^{2*4^{1}} + 2*4^{4^{0} +

2*4^{1}} + 3*4^{2*4^{0} + 2*4^{1}} + 4^{3*4^{0} + 2*4^{1}} + 3*4^{3*4^{1}} + 2*4^{2*4^{0} + 3*4^{1}} + 3*4^{3*4^{0} + 3*4^{1}}
2*8^{0} + 3*8^{1} + 7*8^{2} + 8^{3} + 6*8^{4} + 7*8^{5} + 6*8^{6} + 3*8^{7} + 3*8^{8^{1}} + 4*8^{8^{0} + 8^{1}} + 3*8^{2*8^{0} +

8^{1}}
5*A^{0} + 3*A^{1} + 9*A^{2} + 5*A^{3} + 4*A^{5} + 5*A^{6} + 8*A^{7} + 7*A^{8} + 9*A^{9} + 3*A^{A^{1}} + 4*A^{A^{0} + A^{1}}
+ 9*A^{2*A^{0} + A^{1}} + 4*A^{3*A^{0} + A^{1}} + 8*A^{4*A^{0} + A^{1}} + 2*A^{5*A^{0} + A^{1}} + 6*A^{6*A^{0} + A^{1}} +

A^{7*A^{0} + A^{1}} + A^{8*A^{0} + A^{1}}

More Test cases
Input and Output files

Fun Video. Kill the Mathematical Hydra – PBS Infinite Series
How Infinity Explains the Finite – PBS Infinite Series

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Horner's Method.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Hereditary Representation/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Hereditary Representation/Output.txt
https://youtu.be/uWwUpEY4c8o
https://youtu.be/oBOZ2WroiVY

§7. Paths Paranoia (More Recursion?)

Topics. recurrence relations and previous sections.

7.1. Staircase Walk

Consider a grid with m horizontal lines and n vertical lines. A Staircase Walk is defined as the path from bottom-left
corner of the grid to the top right corner by walking along the lines; so, the person is constrained to move only in
positive x or positive y direction.

Figure 9: Example walks for case m = n = 1 (#2), m = n = 2 (#6), m = n = 3 (#20) (Image Source)

Problem Statement:
Find the number of possible Staircase Walks for a given m,n (for all test cases).

Starter Code

Input Format
t (number of test cases, an integer)
m1 n1 m2 n2 . . . mt nt (t space seperated integer pairs for each testcase)

Output Format
Number of Staircase Walks for mi, ni (each test case on a newline)

Constraints
1 ≤ mi, ni ≤ 15

Function(s) to Implement
int staircase walks(int m, int n) – returns the number of staircase walks for m,n.

Sample Input
6
1 1 2 5 6 3 7 10 13 8 15 15

Sample Output
1
5
21
5005
50388
40116600

Fun Video. The Devil’s Staircase – PBS Infinite Series
5 = 3 + 4? The Staircase Paradox. Spot The Mistake ”Disproving” The Pythagorean Theorem – Mind Your Decisions

https://mathworld.wolfram.com/StaircaseWalk.html
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Staircase Walk.cpp
https://youtu.be/dQXVn7pFsVI
https://youtu.be/LWPOlZBXtD8

7.2. Dyck Path

A Dyck Path is Staircase Walk (m = n) when the path always stays on or below the diagonal.

Figure 10: Example walks for case n = 1 (#1), n = 2 (#2), n = 3 (#5), n = 4 (#14) (Image Source)

Problem Statement:
Find the number of possible Dyck Path for a given n (for all test cases).

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Number of Dyck Paths for ni (each test case on a newline)

Constraints
1 ≤ ni ≤ 15

Function(s) to Implement
int dyck paths(int n) – returns the number of possible staircase walks for n.

Sample Input
15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample Output
1
2
5
14
42
132
429
1430
4862
16796
58786
208012
742900
2674440
9694845

https://mathworld.wolfram.com/DyckPath.html
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Dyck Path.cpp

7.3. Delannoy Number

Consider a grid with m horizontal lines and n vertical lines. A Delannoy Number is defined as the path from bottom-
left corner of the grid to the top right corner by walking along the lines or diagonally upwards; so, the person is
constrained to move only in positive x or positive y or positive x− y (i.e. along y = x) direction.

Figure 11: Example walks for case m = n = 1 (#2), m = n = 2 (#6), m = n = 3 (#20) (Image Source)

Problem Statement:
Find the number of possible Delannoy Numbers for a given m,n (for all test cases).

Starter Code

Input Format
t (number of test cases, an integer)
m1 n1 m2 n2 . . . mt nt (t space seperated integer pairs for each testcase)

Output Format
Number of Delannoy Numbers for mi, ni (each test case on a newline)

Constraints
1 ≤ mi, ni ≤ 13

Function(s) to Implement
int delannoy number(int m, int n) – returns the number of Delannoy Numbers for m,n.

Sample Input
11
1 1 2 2 3 3 5 5 10 10 13 13 2 5 3 3 6 3 7 10 13 8

Sample Output
3
13
63
1683
8097453
1409933619
61
63
377
433905
8405905

https://mathworld.wolfram.com/DelannoyNumber.html
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Delannoy Number.cpp

7.4. Schröder Number

A Schroder Number is count of Delannoy Walks (m = n) when the path always stays on or below the diagonal.

Figure 12: Example walks for case n = 1 (#2), n = 2 (#6), n = 3 (#22) (Image Source)

Problem Statement:
Find the Schroder Number for a given n (for all test cases).

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Number of Schroder Numbers for ni (each test case on a newline)

Constraints
1 ≤ ni ≤ 14

Function(s) to Implement
int schroder number(int n) – returns the number of possible delannoy walks for n.

Sample Input
14
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sample Output
2
6
22
90
394
1806
8558
41586
206098
1037718
5293446
27297738
142078746
745387038

https://mathworld.wolfram.com/SchroederNumber.html
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Schroder Number.cpp

7.5. Motzkin Number

Consider a grid with n horizontal lines and n vertical lines. A Motzkin Number is defined as the number of paths
from bottom-left corner of the grid to the bottom-right corner which always stays on or above x−axis by walking
horizontally fowards or diagonally upwards or diagonally downwards; so, the person is constrained to move only in
positive x and along y = x or y = −x (y direction can be negative).

Figure 13: Example walks for case n = 1 (#1), n = 2 (#2), n = 3 (#4), n = 4 (#9) (Image Source)

Problem Statement:
Find the Motzkin Number for a given n (for all test cases).

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Number of Motzkin Numbers for ni (each test case on a newline)

Constraints
1 ≤ ni ≤ 20

Function(s) to Implement
int motzkin number(int n) – returns the number of possible walks for n.

Sample Input
10
1 2 3 4 5 8 11 14 17 20

Sample Output
1
2
4
9
21
323
5798
113634
2356779
50852019

https://mathworld.wolfram.com/MotzkinNumber.html
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Motzkin Number.cpp

7.6. Hilbert Curve

Abhiram Ranade, 2013. Do not distribute 172

Figure 10.4: Hilbert spa
e �lling
urves H1; H2; H3; H4Line Lbran
h(rx, ry, LSRx, SRy); Lbran
h.imprint();Line Rbran
h(rx, ry, RSRx, SRy); Rbran
h.imprint();tree(height-1, H_b-H_b/height, W_b/2, LSRx, SRy); // Left Subtree.tree(height-1, H_b-H_b/height, W_b/2, RSRx, SRy); // Right Subtree.}}This
ode is more
ompa
t, be
ause we dont have to worry about managing the post
ondi-tions of the turtle.However it should be noted that this
ode is only useful to grow trees verti
ally. Supposeyou want to orient the tree at an angle of 60 degrees to the verti
al, then this
ode is useless.However, the turtle based
ode
an be used, we merely
all it after the turtle is oriented atthe required angle. This feature appears useful for drawing many real trees, i.e. the subtreesof many trees appear grow at an angle to the verti
al. As a result, to draw realisti
 looking(botani
al) trees, it might be more
onvenient to use the turtle based
ode. See Exer
ise 13.10.2.2 Hilbert spa
e �lling
urveFigure 10.4 shows
urves H1; H2; H3 and H4, left to right. The exer
ises ask you to under-stand the re
ursive stru
ture of the
urve, i.e.
an you obtain Hi by
omposing some Hi�1
urves with some
onne
ting lines. This will help to write a re
ursive fun
tion to draw anarbitrary
urve Hn. These
urves were invented by the mathemati
ian David Hilbert, andare examples of so
alled spa
e-�lling
urves.

1 2 3 4

Figure 14: Hilbert Curve (Image Source)

Problem Statement:
Take an integer as input and draw the corresponding iteration of this fractal using turtleSim

You may think along these lines

Step 1 Find a simple pattern in these iterations.

Step 2 Think how can you implement this pattern in an efficient way (here think in the number of lines of code you
have to write. Word of caution: this is just one of the possible definitions of efficient code).

Step 3 Write the code!

In case you are stuck, here’s the starter code!

Starter Code

Feel free to discuss your thoughts.

Fun Video. Hilbert’s Curve: Is infinite math useful? – 3Blue1Brown
Recursive PowerPoint Presentations [Gone Fractal!] – Stand-up Maths

For more interesting recursive and fractal problems, check out L-Systems.

https://www.cse.iitb.ac.in/~ranade/book.html
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Hilbert Curve.cpp
https://youtu.be/3s7h2MHQtxc
https://youtu.be/b-Fa6HtvGtQ

§8. Sequence Eminence (Intro to Arrays)

Topics. array traversal, manipulation and previous sections. Some problems can be solved without arrays too.

8.1. Josephus Problem

Suppose there are n terrorists around a circle facing towards the centre. They are numbered 1 to n along clockwise
direction. Initially, terrorist 1 has the sword. Now, the terrorist with sword kills the kth nearest alive terrorist to its left
and passes the sword to (k + 1)st nearest alive terrorist to its left. The process repeats. Basically, every kth terrorist
is killed until only one survives. Then the last terrorist is killed.

1.3 THE JOSEPHUS PROBLEM 9

example, here's the starting con�guration for n = 10:

'$
&%

6

1
2

3

4

5
6

7

8

9

10

The elimination order is 2, 4, 6, 8, 10, 3, 7, 1, 9, so 5 survives. The problem:
Determine the survivor's number, J(n).Here's a case where

n = 0 makes no
sense.

We just saw that J(10) = 5. We might conjecture that J(n) = n/2 when
n is even; and the case n = 2 supports the conjecture: J(2) = 1. But a few
other small cases dissuade us | the conjecture fails for n = 4 and n = 6.

n 1 2 3 4 5 6

J(n) 1 1 3 1 3 5

It's back to the drawing board; let's try to make a better guess. Hmmm . . .Even so, a bad
guess isn't a waste
of time, because it
gets us involved in
the problem.

J(n) always seems to be odd. And in fact, there's a good reason for this: The
�rst trip around the circle eliminates all the even numbers. Furthermore, if
n itself is an even number, we arrive at a situation similar to what we began
with, except that there are only half as many people, and their numbers have
changed.

So let's suppose that we have 2n people originally. After the �rst go-
round, we're left with

'$
&%

6

1
3

5

7

. . .

2n− 3

2n− 1

and 3 will be the next to go. This is just like starting out with n people, except
that each person's number has been doubled and decreased by 1. That is,This is the tricky

part: We have
J(2n) =
newnumber(J(n)) ,
where
newnumber(k) =
2k − 1 .

J(2n) = 2J(n) − 1 , for n � 1.

We can now go quickly to large n. For example, we know that J(10) = 5, so

J(20) = 2J(10) − 1 = 2 ·5− 1 = 9 .

Similarly J(40) = 17, and we can deduce that J(5 ·2m) = 2m+1 + 1.

Figure 15: Example arrangement of 10 terrorists

For example, in the above arrangement,
when k = 1, 1 kills 2, 3 kills 4, 5 kills 6, 7 kills 8, 9 kills 10, 1 kills 3, 5 kills 7, 9 kills 1 and 5 kills 9. So, 5 survives;
when k = 2, 1 kills 3, 4 kills 6, 7 kills 9, 10 kills 2, 4 kills 7, 8 kills 1, 4 kills 8, 10 kills 5 and 4 kills 10. So, 4 survives.
Problem Statement:
For a given n, k pair, and starting position 1, print the terrorists in the sequence they are killed.

Starter Code

Input Format
t (number of test cases, an integer)
n1 k1 n2 k2 . . . nt kt (t space seperated pairs (number of terrorists n and k) for each testcase)

Output Format
Terrorists in the sequence they are killed (each test case on a newline)

Constraints
1 ≤ ki ≤ ni ≤ 100

Sample Input
9
1 1 2 1 4 1 4 2 8 1 8 3 10 2 16 7 50 25

Sample Output
1
2 1
2 4 3 1
3 2 4 1
2 4 6 8 3 7 5 1
4 8 5 2 1 3 7 6
3 6 9 2 7 1 8 5 10 4
8 16 9 2 12 6 3 15 14 1 5 11 10 4 13 7
26 2 29 6 34 12 41 20 50 32 14 46 30 15 49 37 23 11 3 43 36 28 24 21 19 22 27 35 42 1 10 33 4 25 7 44 38
31 40 5 18 16 39 9 17 45 48 13 8 47

Note. Verify your program on even more testcases from here.

Fun Video. The Josephus Problem – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Josephus Problem.cpp
https://cses.fi/problemset/task/2163/
https://youtu.be/uCsD3ZGzMgE

8.2. Van Eck’s Sequence

The Van Eck’s Sequence is defined as follows:

• a0 = 0 then for n > 0,

• an+1 =

{
n−m where m the maximal index < n exists, such that am = an

0 if such m < n doesn’t exist, then we take m = n → an+1 = 0.

Problem Statement:
Generate the first n+ 1 elements a0, a1, . . . , an of the Van Eck’s Sequence.

Starter Code

Input Format
n (a single integer)

Output Format
a0 a1 . . . an (space seperated integers)

Constraints
1 ≤ n ≤ 100000

Sample Input
500

Sample Output
0 0 1 0 2 0 2 2 1 6 0 5 0 2 6 5 4 0 5 3 0 3 2 9 0 4 9 3 6 14 0 6 3 5 15 0 5 3 5 2 17 0 6 11 0 3 8 0 3 3 1 42 0
5 15 20 0 4 32 0 3 11 18 0 4 7 0 3 7 3 2 31 0 6 31 3 6 3 2 8 33 0 9 56 0 3 8 7 19 0 5 37 0 3 8 8 1 46 0 6 23
0 3 9 21 0 4 42 56 25 0 5 21 8 18 52 0 6 18 4 13 0 5 11 62 0 4 7 40 0 4 4 1 36 0 5 13 16 0 4 8 27 0 4 4 1
13 10 0 6 32 92 0 4 9 51 0 4 4 1 14 131 0 6 14 4 7 39 0 6 6 1 12 0 5 39 8 36 44 0 6 10 34 0 4 19 97 0 4 4 1
19 6 12 21 82 0 9 43 0 3 98 0 3 3 1 15 152 0 6 17 170 0 4 24 0 3 12 24 4 6 11 98 21 29 0 10 45 0 3 13 84 0
4 14 70 0 4 4 1 34 58 0 6 23 144 0 4 9 51 94 0 5 78 0 3 26 0 3 3 1 21 38 0 6 21 4 19 76 0 6 6 1 12 56 166
0 7 111 0 3 21 16 145 0 5 33 206 0 4 23 46 194 0 5 9 47 0 4 9 4 2 223 0 6 33 19 39 132 0 6 6 1 40 185 0 6
5 23 28 0 5 4 22 0 4 3 46 36 151 0 6 15 126 0 4 10 110 0 4 4 1 29 118 0 6 14 112 0 4 9 51 102 0 5 33 50 0
4 9 9 1 20 307 0 7 88 0 3 42 262 0 4 14 27 233 0 5 23 60 0 4 9 22 60 5 8 210 0 8 3 22 8 3 3 1 34 156 0 10
63 0 3 8 11 183 0 5 22 17 199 0 5 5 1 19 109 0 6 73 0 3 19 7 58 183 20 64 0 8 26 174 0 4 52 319 0 4 4 1
25 331 0 6 25 4 7 23 69 0 7 4 6 9 71 0 6 4 6 2 158 0 6 4 6 2 6 2 2 1 30 0 10 73 54 0 4 13 247 0 4 4 1 13 6
18 367 0 8 59 0 3 70 257 0 4 14 123 0 4 4

More Test cases
Input and Output files

Fun Video. Don’t Know (the Van Eck Sequence) – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Van Eck's Sequence.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Van Eck's Sequence/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Van Eck's Sequence/Output.txt
https://youtu.be/etMJxB-igrc

8.3. Look-And-Say Sequence

As the name suggests, the look-and-say sequence is generated by the reading of the digits of the previous sequence.
For example, starting with the sequence 1.

• 1 is read off as “one 1” or 11.

• 11 is read off as “two 1s” or 21.

• 21 is read off as “one 2, one 1” or 1211.

• 1211 is read off as “one 1, one 2, two 1s” or 111221.

• 111221 is read off as “three 1s, two 2s, one 1” or 312211 and so on.

Problem Statement:
Generate the first n iterations of the look-and-say sequence.

Starter Code

Input Format
n (a single integer)

Output Format
First n iterations of the look-and-say sequence (each iteration on a newline)

Constraints
1 ≤ n ≤ 40

Sample Input
15

Sample Output
1

11

21

1211

111221

312211

13112221

1113213211

31131211131221

13211311123113112211

11131221133112132113212221

3113112221232112111312211312113211

1321132132111213122112311311222113111221131221

11131221131211131231121113112221121321132132211331222113112211

311311222113111231131112132112311321322112111312211312111322212311322113212221

More Test cases
Input and Output files

Fun Video. Look-and-Say Numbers (feat John Conway) – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Look-And-Say Sequence.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Look-And-Say Sequence/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Look-And-Say Sequence/Output.txt
https://youtu.be/ea7lJkEhytA

8.4. Thue-Morse Sequence

Thue-Morse Sequence aka Fair Share Sequence is an infinite binary sequence obtained by starting with 0 and successively appending the Boolean complement of the
sequence obtained thus far (called prefixes of the sequence).
For example, starting with the sequence 0,

• Append complement of 0, we get 01

• Append complement of 01, we get 0110

• Append complement of 0110, we get 01101001 and so on.

Also, by using Thue-Morse sequence elements in the turtle simulator, we get a mysterious curve4 by following the below rule.

• If an element is 0, then the turtle rotates right by 180°.

• If an element is 1, then the turtle moves forward by one unit and then rotates right by 60°.

Can you figure out the pattern of this curve?

Problem Statement:
Generate the first n elements of the Thue-Morse sequence and draw the corresponding curve using turtleSim.
Scale the curve in such a way that it roughly takes same width and height for all n.

Starter Code

Input Format
n (a single integer)

Output Format
First n elements of the Thue-Morse sequence and the curve.

Constraints
1 ≤ n ≤ 100000 (n need not be a power of 2)

Sample Input
111

Sample Output
011010011001011010010110011010011001011001101001011010011001011010010110011010010110100110010110011010011001011

More Test cases
Input and Output files

The output Koch Curve convergents

(a) Iteration 0, n = 2 (b) Iteration 1, n = 8 (c) Iteration 2, n = 32

(d) Iteration 3, n = 128 (e) Iteration 4, n = 512 (f) Iteration 5, n = 2048

(g) Iteration 6, n = 8192

Figure 16: Koch Curve Iterations and the outputs for odd powers of 2

(a) n = 4 (b) n = 111 (c) n = 1729

Figure 17: The outputs for numbers which are not a odd power of 2

Fun Video. The Fairest Sharing Sequence Ever – Stand-up Maths
Fractal charm: Space filling curves – 3Blue1Brown

4called Koch curve, it is a fractal curve that has infinite length but contained in a finite area. Can you see why?

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Thue-Morse Sequence.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Thue-Morse Sequence/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Thue-Morse Sequence/Output.txt
https://youtu.be/prh72BLNjIk
https://youtu.be/RU0wScIj36o

8.5. Recaman’s Sequence

The Recaman’s sequence is defined as below:

• r0 = 0

• rn =

{
rn−1 − n if rn−1 − n > 0 and ∀i < n, ri ̸= rn−1 − n, i.e. rn−1 − n is positive and has not yet occurred in the sequence

rn−1 + n otherwise

Also, by using Recaman’s sequence elements in the turtle simulator, we can get beautiful curves as shown in 18 by following the below rules:

0 1 2 3 6 7 11 12 13 20 21

Figure 18: Recaman’s Sequence Drawing Procedure

• Create a canvas named “Recamans Sequence” with width=1920, and height=1080.

• Connect all consecutive terms using semicircles.

• The semicircles should be parallel to x−axis with end points as consecutive terms

• The semicircles should alternate above and below the x−axis; i.e., it should be below the axis when connecting r0, r1, above the axis when connecting r1, r2,
again below for r2, r3, and so on.

• The figure should be dynamic; i.e., the x−axis should be such that for any n the figure takes up at least half the canvas and it also remains within the canvas.

• Don’t draw the numbers and the axis. They are just to visualise the construction.

Problem Statement:
Generate the first n+ 1 elements r0, r1, . . . , rn of the Recaman’s Sequence and draw the corresponding curve using turtleSim.

Starter Code

Input Format
n (a single integer)

Output Format
First n+ 1 elements of the Recaman’s sequence and the curve.

Constraints
1 ≤ n ≤ 1000

Sample Input
60

Sample Output
0 1 3 6 2 7 13 20 12 21 11 22 10 23 9 24 8 25 43 62 42 63 41 18 42 17 43 16 44 15 45 14 46 79 113 78 114 77 39 78 38 79 37 80 36 81 35 82 34 83 33 84
32 85 31 86 30 87 29 88 28

More Test cases
Input and Output files

The output curve

(a) n = 10 (b) n = 60 (c) n = 75

Figure 19: Output Ford Circles for few n

Fun Video. The Slightly Spooky Recamán Sequence – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Recaman's Sequence.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Recaman's Sequence/Input
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Recaman's Sequence/Output
https://youtu.be/FGC5TdIiT9U

8.6. Farey Sequence

Farey sequence has all rational numbers in range [0/1 to 1/1] sorted in increasing order such that the denominators are less than or equal to n and all numbers are
in reduced forms i.e., 2/4 does not belong to this sequence as it can be reduced to 1/2.
For example, n = 4, the possible rational numbers in increasing order are 0/1, 1/4, 1/3, 1/2, 2/3, 3/4, 1/1.

Stern-Brocot Tree
To generate the Farey Sequence, we have to first look at the Stern-Brocot Tree shown in 20.

Figure 20: The Stern-Brocot Tree for Level 1− 4 (Image by Aaron Rotenberg licensed under CC BY-SA 3.0)

In this tree, a child is given by the mediant of their parents; i.e, for child of parents
a

c
and

b

d
is

a+ b

c+ d
.

Some examples for parent, child are as follows –
(
0

1
,
1

1
→ 1

2

)
,
(
1

1
,
1

0
→ 2

1

)
,
(
0

1
,
1

2
→ 1

3

)
,
(
1

2
,
1

1
→ 2

3

)
,
(
1

1
,
2

1
→ 3

2

)
,
(
2

1
,
1

0
→ 3

1

)
,

Notice that the farey sequence for corresponding n is the subset of vertices of this tree calculated upto level n.

Also, for every fraction
p

q
in the farey sequence draw a circle with centre at

(
p

q
,

1

2q2

)
and radius

(
1

2q2

)
. You may need to do some scaling to get a proper figure.

Problem Statement:
Generate the Farey Sequence for corresponding n using ideas from the Stern-Brocot Tree or otherwise and draw the circles.

Hint. Recursion!

Starter Code

Input Format
n (a single integer)

Output Format
Corresponding numbers in farey sequence in p/q format with the circles.

Constraints
1 ≤ n ≤ 30 (an integer)

Sample Input
7

Sample Output
0/1 1/7 1/6 1/5 1/4 2/7 1/3 2/5 3/7 1/2 4/7 3/5 2/3 5/7 3/4 4/5 5/6 6/7 1/1

More Test cases
Input and Output files

The output circles (Ford Circles)

(a) n = 3 (b) n = 7 (c) n = 10

Figure 21: Output Ford Circles for few n

Interesting Observation. If the outputs take a long time then how can you make it faster?. Also, try calculating terms mathematically to get the fastest way!

Fun Video. Infinite Fractions – Numberphile
Funny Fractions and Ford Circles – Numberphile

https://commons.wikimedia.org/wiki/File:SternBrocotTree.svg
https://commons.wikimedia.org/wiki/User:Aaron_Rotenberg
https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/Mediant_(mathematics)
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Farey Sequence.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Farey Sequence/Input
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Farey Sequence/Output
https://youtu.be/DpwUVExX27E
https://youtu.be/0hlvhQZIOQw

§9. Array Leeway (2-D Arrays)

Topics. 2-D arrays, function & arrays and previous sections.

9.1. Case Converter

Problem Statement:
Convert a given text into different cases as mentioned below

aLtErNaTiNg CaPs Start with a lower case letter and then keep switching between upper case and lower case letters alternatingly.

Capitalize Word Capitalize the first letter of each word and convert all other letters of that word to lower case.

lower case Convert every alphabet to lower case.

Sentence case Capitalize the first letter of each sentence and convert all other letters of that sentence to lower case. Assume that the sentence only ends
with a full stop (‘.’) .

tOGGLE cASE Uncapitalize the first letter of each word and convert all other letters of that word to upper case.

UPPER CASE Convert every alphabet to upper case.

Note. In all above cases, ignore non-alphabetic characters.

Starter Code

Input Format
sentence length x (x is either a/c/l/s/t/u denoting the case to convert to or e for all cases)
sentence (entire sentence in a line, the sentence length includes spaces)

Output Format
The sentence converted into x case (already taken care of in Starter Code)

Constraints
1 ≤ sentence length ≤ 10000

Sample Input
479 e
The Earth is a very small stage in a vast cosmic arena. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on
the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how
fervent their hatreds. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the
momentary masters of a fraction of a dot.

Sample Output
tHe EaRtH iS a VeRy SmAlL sTaGe In A vAsT cOsMiC aReNa. ThInK oF tHe EnDlEsS cRuElTiEs ViSiTeD bY tHe InHaBiTaNtS oF oNe CoRnEr
Of ThIs PiXeL oN tHe ScArCeLy DiStInGuIsHaBlE iNhAbItAnTs Of SoMe OtHeR cOrNeR, hOw FrEqUeNt ThEiR mIsUnDeRsTaNdInGs, HoW
eAgEr ThEy ArE tO kIlL oNe AnOtHeR, hOw FeRvEnT tHeIr HaTrEdS. tHiNk Of ThE rIvErS oF bLoOd SpIlLeD bY aLl ThOsE gEnErAlS aNd
EmPeRoRs So ThAt, In GlOrY aNd TrIuMpH, tHeY cOuLd BeCoMe ThE mOmEnTaRy MaStErS oF a FrAcTiOn Of A dOt.

The Earth Is A Very Small Stage In A Vast Cosmic Arena. Think Of The Endless Cruelties Visited By The Inhabitants Of One Corner
Of This Pixel On The Scarcely Distinguishable Inhabitants Of Some Other Corner, How Frequent Their Misunderstandings, How Eager They Are
To Kill One Another, How Fervent Their Hatreds. Think Of The Rivers Of Blood Spilled By All Those Generals And Emperors So That, In Glory
And Triumph, They Could Become The Momentary Masters Of A Fraction Of A Dot.

the earth is a very small stage in a vast cosmic arena. think of the endless cruelties visited by the inhabitants of one corner of this pixel
on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another,
how fervent their hatreds. think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become
the momentary masters of a fraction of a dot.

The earth is a very small stage in a vast cosmic arena. Think of the endless cruelties visited by the inhabitants of one corner of this
pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another,
how fervent their hatreds. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become
the momentary masters of a fraction of a dot.

tHE eARTH iS a vERY sMALL sTAGE iN a vAST cOSMIC aRENA. tHINK oF tHE eNDLESS cRUELTIES vISITED bY tHE iNHABI-
TANTS oF oNE cORNER oF tHIS pIXEL oN tHE sCARCELY dISTINGUISHABLE iNHABITANTS oF sOME oTHER cORNER, hOW fREQUENT
tHEIR mISUNDERSTANDINGS, hOW eAGER tHEY aRE tO kILL oNE aNOTHER, hOW fERVENT tHEIR hATREDS. tHINK oF tHE rIVERS oF
bLOOD sPILLED bY aLL tHOSE gENERALS aND eMPERORS sO tHAT, iN gLORY aND tRIUMPH, tHEY cOULD bECOME tHE mOMENTARY
mASTERS oF a fRACTION oF a dOT.

THE EARTH IS A VERY SMALL STAGE IN A VAST COSMIC ARENA. THINK OF THE ENDLESS CRUELTIES VISITED BY THE
INHABITANTS OF ONE CORNER OF THIS PIXEL ON THE SCARCELY DISTINGUISHABLE INHABITANTS OF SOME OTHER CORNER,
HOW FREQUENT THEIR MISUNDERSTANDINGS, HOW EAGER THEY ARE TO KILL ONE ANOTHER, HOW FERVENT THEIR HATREDS.
THINK OF THE RIVERS OF BLOOD SPILLED BY ALL THOSE GENERALS AND EMPERORS SO THAT, IN GLORY AND TRIUMPH, THEY
COULD BECOME THE MOMENTARY MASTERS OF A FRACTION OF A DOT.

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Case Converter.cpp
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Case Converter.cpp

9.2. Spiral Grid

Problem Statement:
Generate a grid containing numbers from 1 to n2 such that 1 is at center and then the numbers spiral outwards from
1 in counterclockwise direction. Also, make sure each element of grid is equally spaced as shown in 22.

Note. If n is even then choose the left-bottom element from the four possible centers.

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t space seperated integers for each testcase)

Output Format
Required spiral grid of n2

i numbers with appropriate spacing

Constraints
1 ≤ ni ≤ 100

Sample Input
5
1 2 3 6 15

Sample Output

Figure 22: Sample Output

More Test cases
Input and Output files

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Spiral Grid.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Spiral Grid/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Spiral Grid/Output.txt

9.3. Minesweeper

In the game of Minesweeper, there is an m× n board which has exactly k mines hidden. The aim is to “clear” the
board by clicking on cells with no mine and avoiding clicking on any mine. By clicking on a cell with no mine, the
player gets the number of neighbouring mines of that cell by the below rule

• If the cell c is not at the boundary (23a) then it is the number of mines in a 3× 3 square with that centre c.

• If the cell c is at the boundary (23b, 23b) even then c cell is considered as the centre of 3× 3 square; but, only
some of the cells of the constructed square will lie inside the board.

(a) Cell is not at the boundary (b) Cell is at the boundary (c) Cell is at the boundary (d) Explanation for all cells

Figure 23: Minesweeper – Explanation

Problem Statement:
Calculate the neighbour count for all cells except at the mines where you have to output the character ‘M’.

Starter Code

Input Format
m n (space seperated integer pair corresponding to number of rows and columns)
k x1 y1 · · · xk yk (2k + 1 space seperated integers corresponding to number of mines and the x, y
co-ordinates of all mines (1-indexed))

Output Format

m× n matrix A, where aij =

{
‘M’ if there is a mine at (i, j)

number of neighbouring mines of the cell (i, j) otherwise

Constraints
1 ≤ m,n ≤ 50, 1 ≤ k ≤ m× n
1 ≤ x ≤ m, 1 ≤ y ≤ n
0 ≤ aij ≤ 8 or aij = ‘M’.

Sample Input
4 4
5 1 1 2 2 3 3 3 4 4 4

Sample Output
M 2 1 0
2 M 3 2
1 2 M M
0 1 3 M

More Test cases
Input and Output files

Note. Try implementing the complete minesweeper game :)

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Minesweeper.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Minesweeper/Input
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Minesweeper/Output

9.4. Gray Code

A gray code is a rearrangement of binary numbers such that any 2 consecutive numbers differ only in 1 bit.

A simple way to generate n-bit gray code is given below

• Start with an array of 2 numbers A = {0, 1}
• Repeat the below steps n− 1 times

– Reverse the array A to get array A′ and then append A′ to A.

– Append 0 to the left of the first half elements of A and
Append 1 to the left of the second half elements of A.

0

1

0

1

1

0

00

01

11

10

00

01

11

10

10

11

01

00

000

001

011

010

110

111

101

100

Figure 24: Gray Code – Generation

Problem Statement:
For a given n, generate its corresponding Gray Code (i.e. first 2n elements).

Starter Code

Input Format
n (integer)

Output Format
2n numbers denoting Gray Code

Constraints
1 ≤ n ≤ 10

Sample Input
3

Sample Output
000
001
011
010
110
111
101
100

More Test cases
Input and Output files

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Gray Code.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Gray Code/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Gray Code/Output.txt

§10. Array Powerplay (More Arrays or Recursion?)

Topics. Recursion & arrays and previous sections.

10.1. Determinant of a Matrix

For a matrix A ∈ Zn×n (zero-based indexing) and for a i ∈ {0, 1, . . . , n−1}, the determinant of A (det(A)) is

det(A) =

n−1∑
j=0

(−1)i+jaijMij Mij is the det of the matrix obtained by removing the ith row and jth column of A.

(28)
Problem Statement:
Find the determinant of given matrix A using the above formula (called as Laplace Expansion).

Starter Code

Input Format
t (number of test cases, an integer)
ni (size of matrix A)
a0,0 a0,1 . . . a0,ni−1 (0th row of matrix)
a1,0 a1,1 . . . a1,ni−1 (1th row of matrix)
· · ·
ani−1,0 ani−1,1 . . . ani−1,ni−1 ((ni − 1)th row of matrix)

Output Format
det(A) (space seperated integers for each test case)

Constraints
1 ≤ ni ≤ 10,−1000 ≤ ai,j ≤ 1000 (integers)

Sample Input
5
1
7
2
4 3
1 2
3
5 4 3
6 1 2
7 8 9
4
1 1 1 1
1 3 9 27
1 6 36 216
1 10 100 1000
5
4 -1 -1 -1 -1
-1 2 -1 0 0
-1 -1 2 0 0
-1 0 0 2 -1
-1 0 0 -1 3

Sample Output
7 5 -72 7560 9

Fun Video. The Vandermonde Matrix and Polynomial Interpolation – Dr. Will Wood

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Determinant.cpp
https://youtu.be/Cov_kLatdlc

10.2. Tower of Hanoi

Tower of Hanoi is a mathematical puzzle with three rods (A,B,C) and n disks on left rod (A) with in decreasing order of their radius from top to bottom .

The objective of the puzzle is to move the entire stack of disks to the rightmost rod (C), obeying the following simple rules,

• Only one disk can be moved at a time.

• Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack; i.e., a disk can only be moved if it is the uppermost
disk on a stack.

• No disk may be placed on top of a smaller disk.

Check any of the linked videos below for more information.
Problem Statement: For a given n, output the sequence of steps to be taken in the following format:

Disk <disk-number> from <rod-name> to <rod-name>.

Solve the problem with recursion and without recursion as well :).

Starter Code

Input Format
t (number of test cases, an integer)
n1 n2 . . . nt (t numbers)

Output Format
Corresponding steps till completetion (each step on a new line for each test case)

Constraints
1 ≤ ni ≤ 20 (integers)

Sample Input
4
1 2 3 4

Sample Output
Disk 1 from A to B

Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B

Disk 1 from A to B
Disk 2 from A to C
Disk 1 from B to C
Disk 3 from A to B
Disk 1 from C to A
Disk 2 from C to B
Disk 1 from A to B

Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B
Disk 3 from A to C
Disk 1 from B to A
Disk 2 from B to C
Disk 1 from A to C
Disk 4 from A to B
Disk 1 from C to B
Disk 2 from C to A
Disk 1 from B to A
Disk 3 from C to B
Disk 1 from A to C
Disk 2 from A to B
Disk 1 from C to B

More Test cases
Input and Output files

Fun Video. Binary, Hanoi and Sierpinski, part 1, part 2 – 3Blue1Brown
Towers of Hanoi: A Complete Recursive Visualization – Reducible
The ultimate tower of Hanoi algorithm – Mathologer

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Tower of Hanoi.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Tower of Hanoi/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Tower of Hanoi/Output.txt
https://youtu.be/2SUvWfNJSsM
https://youtu.be/bdMfjfT0lKk
https://www.youtube.com/@3blue1brown
https://youtu.be/rf6uf3jNjbo
https://youtu.be/MbonokcLbNo

10.3. Quicksort

Quicksort is a divide and conquer algorithm like merge sort discused in class. It first divides the input array into two smaller sub-arrays: the low elements and the
high elements. It then recursively sorts the sub-arrays. Precisely,

• Pick an element, called a pivot, from the array.

• Reorder the array so that all elements with values less than the pivot come before the pivot, while all elements with values greater than the pivot come after it
(equal values can go either way). After this partitioning, the pivot is in its final position (relative to other elements).

• Recursively apply the above steps to the sub-array of elements with smaller values and separately to the sub-array of elements with greater values. The base
case of the recursion are arrays of size zero or one, which are in order by definition, so they never need to be sorted.

Note. The pivot selection and partitioning steps can be done in several different ways; the algorithm’s performance greatly varies with implementation schemes.

4

4

4

4

4

2 7

7

8

3 7 8 5 2 1 9 5 4

3 7 8 5 2 1 9 5

3 78 5 2 1 95

3 78 5 2 19 5

3 78 5 21 9 5

3 78521 9 5

3 78521 9 54

3 1

321

85 9 5

85 95

7 85 95

9

8 9

5 5

1 2 3 4 5 5 7 8 9

Figure 25: Quicksort Runthrough (Image by Znupi, Public domain, via Wikimedia Commons)

Problem Statement:
Sort the given array using Quicksort. Use Lomuto partition scheme, i.e. take the last element of array as pivot.

Note. You are not provided with the size of array. Learn the way to do it! If you give up then go through procedure in starter code and understand it thoroughly.

Starter Code

Input Format
t (number of test cases, an integer)
a0 a1 a2 · · · ani−1 (ni space seperated integers for each testcase)

Output Format
Sorted Array (space seperated elements for each test case)

Constraints
1 ≤ ni ≤ 1000,−100000 ≤ ai ≤ 100000 (integers)

Sample Input
4
1 7 5 2 3 10 4 6 9 8
86 56 24 26 55 73 77 100 53 20 52 59 74 43 19 21 74 51 44 79 76 15 54 62 6 43 42 5 28 84
17 9 10 6 6 12 5 16 18 1 14 11 6 12 14 12 13 10 12 3 2 16 16 14 11 12 7
59 18 -85 99 87 -90 -17 -83 -28 -19 -39 46 -27 -20 53 48 -11 -42 5 85 -49 78 86 -42 -33 -56 -41 21 -62 95 -59 -63 50 57 78 -8 14 -35 -5 7 4 -45 -17 -10 -23

Sample Output
1 2 3 4 5 6 7 8 9 10
5 6 15 19 20 21 24 26 28 42 43 43 44 51 52 53 54 55 56 59 62 73 74 74 76 77 79 84 86 100
1 2 3 5 6 6 6 7 9 10 10 11 11 12 12 12 12 12 13 14 14 14 16 16 16 17 18
-90 -85 -83 -63 -62 -59 -56 -49 -45 -42 -42 -41 -39 -35 -33 -28 -27 -23 -20 -19 -17 -17 -11 -10 -8 -5 4 5 7 14 18 21 46 48 50 53 57 59 78 78 85 86 87 95 99

Fun Video. What’s the fastest way to alphabetize your bookshelf? - Chand John – TED-Ed

https://commons.wikimedia.org/wiki/File:Quicksort-diagram.svg
https://commons.wikimedia.org/wiki/User:Znupi
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Quicksort.cpp
https://youtu.be/WaNLJf8xzC4

§11. Programming Expositions

Topics. All previous sections.

11.1. Newton Interpolation

For a given sequence of numbers {a0, . . . , an−1}, we define ∆k inductively as follows

• ∆0 = {a0, . . . , an−1}
• If ∆i = {b0, b1, . . . , bn−i−2, bn−i−1} then ∆i+1 = {b1 − b0, . . . , bn−i−1 − bn−i−2}; i.e., difference of succesive
terms gives the next sequence. Also, we treat ∆k as an array with ith index as ∆k[i].

Notice, that number of terms reduces by 1 after each iteration. Hence ∆n−1 has only 1 term and we stop.

Now, using these ∆i’s, we can constuct a polynomial f such that f(i) = ai for i = {0, 1, . . . , n − 1}. This process
is called interpolation and the formula for f is given below.

f(x) =

n−1∑
k=0

(
x

k

)
∆k[0] =

n−1∑
k=0

(x)k
k!

∆k[0] where (x)0 = 1 and (x)k = x(x− 1) · · · (x− (k − 1)) (29)

An example from wikipedia,

x f = ∆0 ∆1 ∆2

0 2
0

1 2 2
2

2 4

f(x) = ∆0 · (x)0
0!

+ ∆1 · (x)1
1!

+ ∆2 · (x)2
2!

= 2 · 1 + 0 · x
1
+ 2 · (x)(x− 1)

2

= 2 + (x)(x− 1)

(30)

Problem Statement:
For a given sequence {a0, . . . , an−1}, find its interpolated polynomial and predict the next term an = f(n).

Starter Code

Input Format
t (number of test cases, an integer)
ni a0 a1 . . . ani−1 (ni + 1 space seperated integers for each testcase)

Output Format

f(ni), followed by expansion of f(x)
n−1∑
k=0

xk

k!
∆k[0], ignoring ∆i[0] = 0 terms and ∆i[0] = ±1 coefficients.

Constraints
1 ≤ ni ≤ 20, −1000 ≤ ai ≤ 1000

Sample Input
4
3 2 2 4
4 1 2 3 4
7 3 1 4 1 5 9 2
9 1 2 4 8 16 31 57 99 163

Sample Output
8 2(x) 0/0! + 2(x) 2/2!
5 (x) 0/0! + (x) 1/1!
45 3(x) 0/0! - 2(x) 1/1! + 5(x) 2/2! - 11(x) 3/3! + 24(x) 4/4! - 44(x) 5/5! + 60(x) 6/6!
256 (x) 0/0! + (x) 1/1! + (x) 2/2! + (x) 3/3! + (x) 4/4!

Fun Video. Why don’t they teach Newton’s calculus of ‘What comes next?’ – Mathologer

https://en.wikipedia.org/wiki/Finite_difference#Newton's_series
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Newton Interpolation.cpp
https://youtu.be/4AuV93LOPcE

11.2. ISBN

You may have wondered about the 10 (or 13) digits numbers on the back of every book. They are ISBN, which stands
for International Standard Book Number and is used for uniquely identifying books and other publications (including
e-publications). Go find the ISBN of your favourite book! :)
Let us consider ISBN 10 (10 digit numbers), an old format that got replaced by ISBN 13. The first 9 digits contain
information about the geographical region, publisher and edition of the title. The last digit is a check digit used for
validating the number. Let the number be x1x2x3x4x5x6x7x8x9x10, then the check digit x10 is chosen such that
the checksum = 10x1 + 9x2 + 8x3 + 7x4 + 6x5 + 5x6 + 4x7 + 3x8 + 2x9 + 1x10 is a multiple of 11. This condition
is succinctly represented as below: (

10∑
i=1

(11− i)xi

)
%11 = 0 (31)

Generation of check digit (example)

If the first nine digits are 812913572 then 8× 10+1× 9+2× 8+9× 7+1× 6+3× 5+5× 4+7× 3+2× 2 = 234.
So if x10 = 8, then the checksum is divisible by 11. Hence, the ISBN is 8129135728.

Note. It as possible that the calculated check digit is 10 as we can get any remainder from 0 to 10 when divided by
11. But when the remainder is 10, as is not a single digit, appending 10 to ISBN will make its length 11. To avoid
such cases, the letter ‘X’ is used to denote check digit = 10.

Problem Statement:
Recover and output the missing digit from a given valid ISBN 10 code with a digit erased.
The missing digit can be any xi (1 ≤ i ≤ 10).

Starter Code

Input Format
t (number of test cases, an integer)
10 characters each either representing a digit (0-9) or a missing number (‘?’). (for each testcase)
The last character (check digit) can also be ‘X’.

Output Format
A single digit, that is to be placed at ‘?’ position to make the given ISBN valid. (space seperated)
If the missing integer is 10 then, the output should be ‘X’

Constraints
It is always possible that a unique ISBN exists. (Why?)

Sample Input
9
81291?5728
30303935?7
366205414?
366?054140
05?0764845
?590764845
?43935806X
933290152?
9332?0152X

Sample Output
3 7 0 2 9 0 0 X 9

Fun Video. 11.11.11 – Numberphile

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/ISBN.cpp
https://youtu.be/sPFWfAxIiwg

11.3. Vigenére Cipher

Vigenére Cipher is an cryptographic technique used for encryption and decryption of alphabetic texts. The process is done letter-by-letter.

Encryption

• Generate a message (also called as a plaintext) and an empty ciphertext.

• Select a key; i.e., a string of alphabets. Keep repeating the key until it is as long as message.

• Iterate through the message and key simulataneously, to get current message alphabet and key alphabet.

• Now from the table 26, insert into ciphertext the alphabet corresponding to message alphabet as row and key alphabet as column.

Decryption

• In this case, key and ciphertext are known.

• Iterate through the key and ciphertext simulataneously, to get current key letter and ciphertext letter.

• Now from the table 26, find the ciphertext letter in the column corresponding to the current key letter. The row of ciphertext letter gives plaintext letter.

Note. The encryption and decryption hinges on the fact that the key is kept secret and known only to people encrypting and decrypting the messages.
With the knowledge of key, decryption is “easy” but without key it is “hard”.

Figure 26: The Vigenere square (Image by Matt Crypto, Public domain, via Wikimedia Commons)

Problem Statement:
Implement encryption and decryption function as stated above:

Starter Code

Input Format
t (number of test cases, an integer)
ki pi (size of key and plaintext for each testcase)
K0 . . .Kki

(key)
P0 . . . Ppi

(plaintext)

Output Format
Ciphertext (Verify decryption manually for decrypting the generated ciphertext and comparing with plaintext)

Constraints
1 ≤ ki, pi ≤ 1000, Ki, Pi are CAPITAL LETTERS.

Sample Input
6
5 13
ERWIN
ATTACKONTITAN

16 39
LEOPOLDKRONECKER
GODMADETHEINTEGERSALLELSEISTHEWORKOFMAN

17 136
STUARTMILNERBARRY
IDONOTIMAGINETHATANYWARSINCECLASSICALTIMESIFEVERHASBEENFOUGHTINWHICHONESIDEREADCONSISTENTLYTHEMAINMILITARYAND
NAVALINTELLIGENCEOFTHEOTHER

https://commons.wikimedia.org/wiki/File:Vigenère_square_shading.svg
https://en.wikipedia.org/wiki/User:Matt_Crypto
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Newton Interpolation.cpp

15 201
BERTRANDRUSSELL
MATHEMATICSPOSSESSESNOTONLYTRUTHBUTASUPREMEBEAUTYCOLDANDAUSTERELIKETHATOFSCULPTUREWITHOUTTHEGORGEOUSTRA
PPINGSOFPAINTINGORMUSICYETSUBLIMELYPUREANDCAPABLEOFASTERNPERFECTIONSUCHASONLYTHEGREATESTARTCANSHOW

15 382
BERTRANDRUSSELL
IOUGHTTOCALLMYSELFANAGNOSTICBUTFORALLPRACTICALPURPOSESIAMANATHEISTIDONOTTHINKTHEEXISTENCEOFTHECHRISTIANGODA
NYMOREPROBABLETHANTHEEXISTENCEOFTHEGODSOFOLYMPUSORVALHALLATOTAKEANOTHERILLUSTRATIONNOBODYCANPROVETHATTH
EREISNOTBETWEENTHEEARTHANDMARSACHINATEAPOTREVOLVINGINANELLIPTICALORBITBUTNOBODYTHINKSTHISSUFFICIENTLYLIKELYTO
BETAKENINTOACCOUNTINPRACTICEITHINKTHECHRISTIANGODJUSTASUNLIKELY

9 389
CARLSAGAN
THEEARTHISAVERYSMALLSTAGEINAVASTCOSMICARENATHINKOFTHEENDLESSCRUELTIESVISITEDBYTHEINHABITANTSOFONECORNEROFTHIS
PIXELONTHESCARCELYDISTINGUISHABLEINHABITANTSOFSOMEOTHERCORNERHOWFREQUENTTHEIRMISUNDERSTANDINGSHOWEAGERTHEY
ARETOKILLONEANOTHERHOWFERVENTTHEIRHATREDSTHINKOFTHERIVERSOFBLOODSPILLEDBYALLTHOSEGENERALSANDEMPERORSSOTHA
TINGLORYANDTRIUMPHTHEYCOULDBECOMETHEMOMENTARYMASTERSOFAFRACTIONOFADOT

Sample Output
EKPIPOFJBVXRJ

RSRBOOHDYSVRVOKVCWOAZPOCVWFXJOAFCOCUALQ

AWINFMUULTMEFTYRRSGSWRKEQYPITMAJJGUTFTZFQATSIMFRYRQTXYNWHGOSGMEXHZTFGGYSZWQZPNHTPNJZQLXHTCRFPPZEZOMZCG
LTLYRGPVLIECJNKVJDBAEEVQWQGLVPTYVP

NEKAVMNWZWKHSDDFWJXJNBWFHDQXCFULSNKAFXGLWEIMPBYKRTOYGRHVSYDEFVVEZKRWYULGJDNVPGMLRRZZNZGYEEIIXHIGRRLMLJ
EAAJRXLFFCDZHLARRZSQLLZCLHKMMTPTXFPPILRRDEXUSTLMMIFYRSGHIHHWVQPDXZHESHFYUKGRWJULVZIENWVMLSVENBRJAFW

JSLZYTGRTUDDQJDFPWTEATQFMLAGMFUJFKRLYSIUULMNLMTLKGOFHJCSEEYLULVBJTVGFHGLXSTOOKAVEKLJNWFGPZGXYXTHELJNASRR
ZEEERDOEHGLGTEMWFXYTETUHVRAKXPYDIFYKHRJFXKGJZWZQGNJOEYRFZSPWLUSKTBENQFNZWVTWMYJMIAGLFHFGFZOZGRGGRBYVN
ZSXESFVVBJNBWSYLOIPYULVXRRGKRHVEECDBGYBEAGHRJGLVPGPPMBEGVQRHWDPTAUMTTCOEEZNTMXYZCSURKHVQBMLZMDDVJWBTIR
QKFQDMVPMCKHSEGDBYFAREZBGTHLNGLEJJSGETDIZMYIANKBWULCTTXZTEGBGAOKLEDFOPZDVLL

VHVPSRZHVUAMPJYYMNNLJESGKIACVRDLCUSZKCRCWNGTUKNBZXTNERPDCPKSIRHGLKTWSBIFKTVOTYZHRKNYLTIZAAVSFQGNKCBTNVCG
FZHVUPZIWLUNGJEJNSRIEYADZDLITGHKSYLTLKIAJASTLATTFQFJZEEUTUGRTZJNKRUQWWCWQAEAVTYPARSIFWNUPJSZAAFIERKHUWRCGV
CLHKYNTEKZCIRLBPERYGTNEEJONQWRBEAVTYPARNAGTEUDLHONXQFKSWROVRTSFQTLUOQUPZWDEJBLCLCEZOYETGNVCSLYAAFEDAWR
URFUOKSSTONTNOIJSNJTEKUDAZTNELEOLWVBKCBOEKSWMUMRPTRCQMGSGGRJZXALRNETZZFOLAQQT

Fun Video. Cracking the Cipher Challenge — Simon Singh — GOTO 2016
The Science of Secrecy – Simon Singh

A Challenge

Can you decrypt this ciphertext based on Vigenére Cipher? Key is not provided :)

KHGPYVJLCJAPEPYYOYUGCWJGNVOIUOPBGDOTZCMXGDCVGCZIPOVDIQXGZCZYPLUHDGYGCQPHWCBVHUUSHPWQENKYXOTTUMOUBWJK
OPMVKMLHGFGYHGFGYCLEUACLEUAWQENKHVZTVPGSVOYJOEVPGBGKBKCVYUEUUOYIYVABCDKKCQDCANJOEVJACJVJVYNPYHYTOCOIQB
NJSPRNJSUPMUYOLNJSPNSQEVOCPUVOCUSUIUFDJPMVRKZWJSEHHGBAOYUNQUYYYTZYVRCAVKVNIICBFHLGIQBNGVNPHIWGABCDCTUPT
WZNJKRWYPCVVZCVNSCMOVOUVXQOYQBEOYUDTHNGNKADKWOFBGNGMYEKVLXVRTVOIRCZOPBQVZCXFPMCFGKBKWCUXKCJVONNPABC
FGPNQYMOCOSPAIOIQDHHSTTQJKVDUUSVOCPUKUAJONSHGFGYWJKPNYJONSHGFGYWJKPNYGFGYMKXELBGGCZHKXGHFYKAZNJOUHGGM
QBFFXVRYGZJPMJKPKMQEVVZVRGJUURFYUYOTIOVXQAIWBLPGOIEVONNPAVGZTLWKYWZDKWOFMVOCSCPQVOYOLNPHFKPKBGQGAMVYD
LUNKYFYTGJHNCCKJELYMLCURQBFFFGZNQZRLXJSODBGXKOUFDJLWJKPJYCXFFIWIQBBCFGAIUDQWBKW

Also, the above sample input are some popular quotes are reiterated below for readability.

God made the integers, all else is the work of man

Leopold Kronecker

I do not imagine that any war since classical times, if ever, has been fought in which one side read consistently the main military and naval intelligence of the other.

Stuart Milner-Barry, Bletchley Park cryptanalyst

Mathematics, rightly viewed, possesses not only truth, but supreme beauty—a beauty cold and austere, like that of sculpture, without appeal to any part of our weaker nature,
without the gorgeous trappings of painting or music, yet sublimely pure, and capable of a stern perfection such as only the greatest art can show

Bertrand Russell, Study of Mathematics

I ought to call myself an agnostic; but, for all practical purposes, I am an atheist. I do not think the existence of the Christian God any more probable than the existence of the
Gods of Olympus or Valhalla. To take another illustration: nobody can prove that there is not between the Earth and Mars a china teapot revolving in an elliptical orbit, but
nobody thinks this sufficiently likely to be taken into account in practice. I think the Christian God just as unlikely.

Bertrand Russell, Russell’s teapot

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the
momentary masters of a fraction of a dot. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some
other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds. Our posturings, our imagined self-importance, the delusion
that we have some privileged position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity,
in all this vastness, there is no hint that help will come from elsewhere to save us from ourselves. The Earth is the only world known so far to harbor life. There is nowhere else, at
least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the Earth is where we make our stand. It has been said that
astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To
me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.

Carl Sagan, Pale Blue Dot: A Vision of the Human Future in Space

https://youtu.be/T59hl2nlrT0
https://youtube.com/playlist?list=PLDzQHsXy3284WoBU0pj3x0Oq9n69uOIjy

11.4. Linear Feedback Shift Register

How does a computer generate truly random numbers? Computers are deterministic which means the actions it takes are predetermined. So it can’t generate truly
random numbers unless they observe some unpredictable data like noise. But we can still generate “seemingly” random numbers called pseudorandom numbers.
One such approach is using Linear Feedback Shift Registers (LFSRs).

An LFSR is defined by

• n state variables x1, x2, x3, . . . , xn (collectively called as the state of LFSR (“register”)) with their initial values (called taps) t1, t2, t3, . . . , tn (ti is 0 or 1).

• A feedback polynomial c1x
0 + c2x

1 + c3x
2 + · · ·+ cnx

n−1 + xn (ci is 0 or 1) which updates the state of LFSR as follows

– next(x1, x2, x3, . . . , xn−1) = (x2, x3, x4, . . . , xn) – this is called “shifting” next value of x1 becomes x2, next value of x2 becomes x3, and so on.

– next(xn) = c1x1 ⊕ c2x2 ⊕ · · · ⊕ cn−1xn−1 ⊕ cnxn where ⊕ is the binary xor operator – this is the “linear feedback”.

• The output bit is x1

For example, consider a 3−bit LFSR as shown in 27a. Here, (t1, t2, t3) = (1, 1, 0) and (c1, c2, c3) = (1, 0, 1).
Next, the sequence generation is shown in 27b. Here, the initial state (1, 1, 0) becomes (1, 0, 1 ⊕ 0) = (1, 0, 0) and with similar updates, eventually the sequence
repeats when the state becomes (1, 1, 1) as next state will be (1, 1, 1⊕ 1) = (1, 1, 0).

x1 x2 x3OutputOutput

⊕

x3 = x1 ⊕ x3

1 1 0Initial Values

(a) Given LFSR

1 1 01

⊕

Initial State

1 0 11

⊕

0 1 00

⊕

1 0 01

⊕

0 0 10

⊕

0 1 10

⊕

1 1 11

⊕

Final State Before Repeating

(b) The Generated Sequence is 11001001 repeating (follow the arrows)

Figure 27: Linear Feedback Shift Register – Working

Problem Statement:
A property of n bit LFSR is that the output sequence it generates will start repeating in at most 2n−1 iterations called its period5.
Your task is to simulate an LFSR with a given initial state and feedback polynomial until it repeats and find its period6 in the process.

Starter Code

Input Format
t (number of test cases, an integer)
ni t1 t2 · · · tni c1 c2 · · · cni (2ni + 1 space seperated integers for each testcase)

Output Format
the output sequence generated by the given LFSR followed by the period of this output sequence (each iteration on a newline)

Constraints
1 ≤ ni ≤ 15
ti is either 0 or 1 and c1 = 17, other ci are either 0 or 1 (The LFSR will repeat from the beginning)

Sample Input
1 1 1
2 1 0 1 0
2 1 1 1 0
2 1 1 1 1
3 1 1 0 1 0 1
5 1 0 1 0 0 1 0 0 1 0
7 1 1 0 0 0 0 0 1 0 0 0 0 0 1

Sample Output
1 1
1 0 2
1 1
1 1 0 3
1 1 0 1 0 0 1 7
1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 0 1 31
1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 0 1 1 0 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 1
1 0 0 0 0 1 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 127

More Test cases
Input and Output files

Fun Video. Random Numbers with LFSR (Linear Feedback Shift Register) – Computerphile

5Interestingly, there also exists a feedback polynomial which achieves this maximum period for every n.
6Is there a way to get the period of the sequence using just the feedback polynomial and without actually calculating sequence? The basis of this problem lie in the fascinating area of

mathematics known as Abstract Algebra!
7This makes sure that the sequence will repeat from the beginning and will not have any non-periodic part. For example, 110101010 . . . (‘10’ repeating) is not possible if c1 = 1.

https://en.wikipedia.org/wiki/Exclusive_or
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Linear Feedback Shift Register.cpp
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Linear Feedback Shift Register/Input.txt
https://github.com/paramrathour/CS-101/tree/main/Test Cases/Linear Feedback Shift Register/Output.txt
https://youtu.be/Ks1pw1X22y4

§12. Fractal Fun

Topics. Everthing but not actually everything if you think hard enough :)

12.1. L-Systems

Lindenmayer system, shortly L-system is a recursive system to generate self-similar patterns. Simply put, it contains variables, constants, an axiom and rules.

In fact, we have already seen its example here. So, let’s take that as a reference. We can generate the Thue-Morse Sequence using the below L-System

variables 0,1

constants none

axiom 0 (start with 0)

rules 0 → 01, 1 → 10 (replace 0 by 01 in next step and 1 by 10)

This produces the following sequences

Iterate 0 0

Iterate 1 01

Iterate 2 0110

Iterate 3 01101001

Iterate 4 0110100110010110 and so on

12.1.1 Dragon Curve

variables F,G

constants +–

axiom F

rules F → F+G, G → F–G

The generated sequence is F+G+F–G+F+G–F–G+F+G+F–G–F+G–F–G. . .. Consider F, G as moving forward and + (–) as turning left (right) by 90◦.

Problem Statement:
Draw the corresponding curve using turtleSim with appropriate scaling such that it roughly takes same width and height for all iterates.

Starter Code

(a) Iterate 1 (b) Iterate 2 (c) Iterate 5 (d) Iterate 7 (e) Iterate 10 (f) Iterate 12 (g) Iterate 15

Figure 28: Dragon Curve iterates

12.1.2 Sierpiński Arrowhead Curve

variables A,B

constants +–

axiom A

rules A → B–A–B, B → A+B+A

Try generating this. Here, A, B denote moving forward and + (–) denote turning left (right) by 60◦.

Problem Statement:
Again, draw the corresponding curve using turtleSim with appropriate scaling such that it roughly takes same width and height for all iterates.

Starter Code

(a) Iterate 2 (b) Iterate 4 (c) Iterate 6 (d) Iterate 8 (e) Iterate 10

Figure 29: Sierpiński Arrowhead Curve for even iterates (why only even?)

Fun Video. Unfolding The Dragon — Fractal Curve – Think Twice
Fractals are typically not self-similar – 3Blue1Brown

https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Dragon Curve.cpp
https://github.com/paramrathour/CS-101/blob/main/Starter%20Codes/Sierpi%C5%84ski%20Arrowhead%20Curve.cpp
https://youtu.be/UBuPWdSbyf8
https://youtu.be/gB9n2gHsHN4

12.2. Chaos Game (Iterated Function Systems)

Intuitively, in these systems, we iterate a specific function repeatedly. For simplicity, let us only consider affine transformations8. We take a random initial point

P =

[
x
y

]
and repeatedly apply different affine transformations to get Pnext = fi(P) with some probability pi. After large number of iterations, a pattern emerges!

f(x, y) =

[
a b
c d

][
x
y

]
+

[
e
f

]
(32)

Note. You can get probabilities by smartly generating random numbers. randuv(x, y) (Simplecpp library) generates random numbers (double) between x and y.
If you feel adventurous then implement your own randon number generator using LFSRs :).

12.2.1 Sierpiński Triangle

Consider A,B,C as some co-ordinates of an equilateral triangle. Now, after taking a random initial point P we go half the distance towards A or B or C with equal
probability and repeat this with the new point over and over. This operation can be representated using affine transformations as below

With probability 1/3, apply f1(x, y) =

[
0.05 0.00
0.00 0.05

][
x
y

]
+

1

2

[
Ax

Ay

]
(33)

With probability 1/3, apply f2(x, y) =

[
0.05 0.00
0.00 0.05

][
x
y

]
+

1

2

[
Bx

By

]
(34)

With probability 1/3, apply f3(x, y) =

[
0.05 0.00
0.00 0.05

][
x
y

]
+

1

2

[
Cx

Cy

]
(35)

In limit, we get the Sierpiński Triangle.

Problem Statement:
Simulate this system and observe the generated pattern using turtleSim with appropriate scaling such that it takes same width and height for all iterates.

Starter Code

(a) Iterate 10 (b) Iterate 100 (c) Iterate 1000 (d) Iterate 10000 (e) Iterate 100000

Figure 30: Sierpiński Triangle for iterates growing with power of 10

12.2.2 Barnsley’s Fern

Again, by taking different fi, we get different fractal. An explain

With probability 0.01, apply f1(x, y) =

[
0.00 0.00
0.00 0.16

][
x
y

]
(36)

With probability 0.85, apply f2(x, y) =

[
0.85 0.04
−0.04 0.85

][
x
y

]
+

[
0.00
1.60

]
(37)

With probability 0.07, apply f3(x, y) =

[
0.20 −0.26
0.23 0.22

][
x
y

]
+

[
0.00
1.60

]
(38)

With probability 0.07, apply f4(x, y) =

[
−0.15 0.28
0.26 0.24

][
x
y

]
+

[
0.00
0.44

]
(39)

In limit, we get the Barnsley’s Fern.

Problem Statement:
Simulate this system and observe the generated pattern using turtleSim with appropriate scaling such that it takes same width and height for all iterates.

Starter Code

(a) Iterate 100 (b) Iterate 1000 (c) Iterate 10000 (d) Iterate 100000

Figure 31: Barnsley’s Fern for iterates growing with power of 10

Fun Video. Chaos Game – Numberphile
Chaos Game — Fractals emerging from chaos — Computer simulation – Think Twice

8In general, affine transformations are of the form Ax+ b where A is a matrix and x, b are vectors.

https://github.com/paramrathour/CS-101/blob/main/Starter%20Codes/Sierpi%C5%84ski%20Triangle.cpp
https://github.com/paramrathour/CS-101/tree/main/Starter Codes/Barnsley's Fern.cpp
https://youtu.be/kbKtFN71Lfs
https://youtu.be/IGlGvSXkRGI

	Prodigal Patterns
	Star Spiral
	Peace
	Butterfly
	Alphabetical Floyd's Triangle
	Bernoulli's Triangle
	Modular Times Table

	Expression Obsession
	Harmonic Number
	Wallis Product
	Tetration
	Ramanujan's Nested Radical
	Simple Continued Fractions
	Ramanujan's e2 Formula
	Viète's Formula
	Hölder Mean
	Shoelace Formula
	Simpson's Rule

	Traditional Conditionals
	Triangle Types
	By Side
	By Angle

	Clock Angle
	Fleur Delacour
	Doomsday Algorithm

	Iteration Domination
	Pisano Period
	Palindromic Number
	Kempner Series
	Base –2
	Base Conversion

	Function Admiration
	Collatz Conjecture
	Friendly Pair
	Gauss Circle Problem
	Euler's Totient Function
	Regular Star Polygon

	Recursion Salvation
	Ackermann Function
	Horner's Method
	Modular Exponentiation
	Partitions
	Hereditary Representation

	Paths Paranoia (More Recursion?)
	Staircase Walk
	Dyck Path
	Delannoy Number
	Schröder Number
	Motzkin Number
	Hilbert Curve

	Sequence Eminence (Intro to Arrays)
	Josephus Problem
	Van Eck's Sequence
	Look-And-Say Sequence
	Thue-Morse Sequence
	Recaman's Sequence
	Farey Sequence

	Array Leeway (2-D Arrays)
	Case Converter
	Spiral Grid
	Minesweeper
	Gray Code

	Array Powerplay (More Arrays or Recursion?)
	Determinant of a Matrix
	Tower of Hanoi
	Quicksort

	Programming Expositions
	Newton Interpolation
	ISBN
	Vigenére Cipher
	Linear Feedback Shift Register

	Fractal Fun
	L-Systems
	Dragon Curve
	Sierpiński Arrowhead Curve

	Chaos Game (Iterated Function Systems)
	Sierpiński Triangle
	Barnsley's Fern

